Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. Takamatsu, H. Hirai, R. Sasaki, H. Miyahara, and A. Okino, IEEE Trans. Plasma Sci. 41, 119 (2013).
2.T. Tamura, Y. Kaburaki, R. Sasaki, H. Miyahara, and A Okino, IEEE Trans. Plasma Sci. 39, 1684 (2011).
3.T. Takamatsu, H. Miyahara, T. Azuma, and A. Okino, J. Toxicol. Sci. 39, 281 (2014).
4.K. Shigeta, G. Köllensperger, E. Rampler, H. Traub, L. Rottmann, U. Panne, A. Okino, and N. Jakubowski, J. Anal. At. Spectrom. 28, 637 (2013).
5.K. Shigeta, H. Traub, U. Panne, A. Okino, L. Rottmann, and N. Jakubowski, J. Anal. At. Spectrom. 28, 646 (2013).
6.T. Iwai, Y. Takahashi, H. Miyahara, and A. Okino, Anal. Sci. 29, 1141 (2013).
7.H. Miyahara, T. Iwai, Y. Nagata, Y. Takahashi, O. Fujita, Y. Toyoura, and A. Okino, J. Anal. At. Spectrom. 29, 105 (2014).
8.K. Shigeta, Y. Kaburaki, T. Iwai, H. Miyahara, and A. Okino, J. Anal. At. Spectrom. (2015), doi:10.1039/C3JA50382H.
9.T. Iwai, K. Kakegawa, M. Aida, H. Nagashima, T. Nagoya, M. Kanamori-Kataoka, H. Miyahara, Y. Seto, and A. Okino, Anal. Chem. 87, 5707 (2015).
10.T. Iwai, K Shigeta, M. Aida, Y. Ishihara, H. Miyahara, and A. Okino, J. Anal. At. Spectrom. (2015), doi:10.1039/C4JA00480A.
11.T. Iwai, K. Kakegawa, K. Okumura, M. Kanamori-Kataoka, H. Miyahara, Y. Seto, and A. Okino, J. Mass Spectrom. 49, 522 (2014).
12.T. Takamatsu, A. Kawate, K. Uehara, T. Oshita, H. Miyahara, D. Dobrynin, G. Fridman, A. Fridman, and A. Okino, Plasma Medicine 2, 237 (2012).
13.S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, IEEE Trans. Plasma Sci. 35, 1559 (2007).
14.G. Fridman, M. Peddinghaus, H. Ayan, A. Fridman, M. Balasubramanian, A. Gutsol, A. Brooks, and G. Friedman, Plasma Chem. Plasma Process 26, 425 (2006).
15.J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu, and S. Karrer, J. Dtsch. Dermatol. Ges. 8, 968 (2010).
16.G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, and K. Harding, Plasma Process. Polym. 7, 194 (2010).
17.S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, Appl. Phys. Lett. 100, 113702 (2012).
18.M. Vandamme, E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D. Gosset, C. Kieda, B. Legrain, J. M. Pouvesle, and A. L. Pape, Int. J. Cancer 130, 2185 (2012).
19.D.T. Pham and R.S. Gault, Int. J. Machine Tools & Manufacture 38, 1257 (1998).
20.G. E. Ryan, A. S. Pandit, and D. P. Apatsidis, Biomaterials 29, 3625 (2008).
21.K. V. Wong and A. Hernandez, ISRN Mechanical Engineering 2012, 208760 (2012).
22.R. S. Mason, P. D. Miller, and I. P. Mortimer, Phys. Rev. E 55, 7462 (1997).
23.E. Karakas, M. Koklu, and M. Laroussi, J. Phys. D 43, 155202 (2010).
24.J. T. Herron and D. S. Green, Plasma Chem. Plasma Proc. 21, 459 (2001).
25.D. X. Liu, M. Z. Rong, X. H Wang, F. Iza, M. G. Kong, and P. Bruggeman, Plasma Process. Polym. 7, 846 (2010).
26.D. X. Liu, P. Bruggeman, F. Iza, M. Z. Rong, and M. G. Kong, Plasma Sources Sci. Technol. 19, 025018 (2010).
27.B. Surowsky, O. Schlüter, and D. Knorr, Food Eng Rev (2014), doi: 10.1007/s12393-014-9088-5.
28.M. Kohno, M. Yamada, K. Mitsuta, Y. Mizuta, and T. Yoshikawa, Bull. Chem. Soc. Jpn. 64, 1447 (1991).
29.T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumura, A. Iwasawa, N. Ito, T. Azuma, M. Kohno, and A. Okino, RSC Adv. 4, 39901 (2014).
30.T. Oshita, H. Kawano, T. Takamatsu, H. Miyahara, and A. Okino, IEEE Trans on Plasma Sci. 43, 1987 (2015).

Data & Media loading...


Article metrics loading...



In this study, a small-sized plasma jet source with a 3.7 mm head diameter was created via a 3D printer. The jet’s emission properties and OH radical concentrations (generated by argon, helium, and nitrogen plasmas) were investigated using optical emission spectrometry (OES) and electron spin resonance (ESR). As such, for OES, each individual gas plasma propagates emission lines that derive from gases and ambient air inserted into the measurement system. For the case of ESR, a spin adduct of the OH radical is typically observed for all gas plasma treatment scenarios with a 10 s treatment by helium plasma generating the largest amount of OH radicals at 110 μM. Therefore, it was confirmed that a plasma jet source made by a 3D printer can generate stable plasmas using each of the aforementioned three gases.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd