Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4928039
1.
1.Energy harvesting Technologies, edited by S. Priya and D. J. Inman (Springer, 2009).
2.
2.H. S. Kim, J-H Kim, and J. Kim, Int. J. Precis. Eng. Manuf. 12, 1129 (2011).
http://dx.doi.org/10.1007/s12541-011-0151-3
3.
3.C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunnc, Energy Environ. Sci. 7, 25 (2014).
http://dx.doi.org/10.1039/C3EE42454E
4.
4.S. Roundy, P. K. Wright, and J. Rabaey, Comput. Commun. 26, 1131 (2003).
http://dx.doi.org/10.1016/S0140-3664(02)00248-7
5.
5.P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Proc. IEEE 96, 1457 (2008).
http://dx.doi.org/10.1109/JPROC.2008.927494
6.
6.A. Erturk and D. J. Inman, Piezoelectric energy harvesting (Wiley, 2011).
7.
7.S. R. Anton and K. M. Farinholt, Proc. ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (Stone Mountain, Georgia, USA).
8.
8.P. Pondrom, J. Hillenbrand, G. M. Sessler, J. Bös, and T. Melz, Appl. Phys. Lett. 104, 172901 (2014).
http://dx.doi.org/10.1063/1.4874305
9.
9.S. R. Anton, K. M. Farinholt, and A. Erturk, J. Intell. Mater. Syst. Struct. 25(14), 1681 (2014).
http://dx.doi.org/10.1177/1045389X14541501
10.
10.X. Zhang, G. M. Sessler, and Y. Wang, J. Appl. Phys. 116, 074109 (2014).
http://dx.doi.org/10.1063/1.4893367
11.
11.Y. Feng, K. Hagiwara, Y. Iguchi, and Y. Suzuki, Appl. Phys. Lett. 100, 262901 (2012).
http://dx.doi.org/10.1063/1.4730952
12.
12.Y. Wang, L. Wu, and X. Zhang, IEEE Trans. Dielectr. Electr. Insul. 22, 1349 (2015).
http://dx.doi.org/10.1109/TDEI.2015.7116321
13.
13.Z. Luo, D. Zhu, J. Shi, S. Beeby, C. Zhang, P. Proynov, and B. Stark, IEEE Trans. Dielectr. Electr. Insul. 22, 1360 (2015).
http://dx.doi.org/10.1109/TDEI.2015.7116323
14.
14.P. Pondrom, J. Hillenbrand, G. M. Sessler, J. Bös, and T. Melz, IEEE Trans. Dielectr. Electr. Insul. 22, 1470 (2015).
http://dx.doi.org/10.1109/TDEI.2015.7116339
15.
15.S. Bauer, R. Gerhard-Multhaupt, and G. M. Sessler, Phys. Today 57(2), 37 (2004).
http://dx.doi.org/10.1063/1.1688068
16.
16.S. Bauer, IEEE Trans. Dielectr. Electr. Insul. 13, 953 (2006).
17.
17.M. Paajanen, H. Välimäki, and J. Lekkala, in Proceed. 10th Internat. Meeting on Electrets, (1999) p. 735-738.
18.
18.G. M. Sessler and J. Hillenbrand, Appl. Phys. Lett. 75, 3405 (1999).
http://dx.doi.org/10.1063/1.125308
19.
19.R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 9, 850 (2002).
http://dx.doi.org/10.1109/TDEI.2002.1038668
20.
20.X. Zhang, J. Hillenbrand, and G. M. Sessler, Appl. Phys. Lett. 85, 1226 (2004).
http://dx.doi.org/10.1063/1.1781388
21.
21.X. Zhang, X. W. Zhang, Q. You, and G. M. Sessler, Macromol. Mater. Eng. 299, 290 (2014).
http://dx.doi.org/10.1002/mame.201300161
22.
22.M. Wegener, W. Wirges, R. Gerhard-Multhaupt, M. Dansachmüller, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, M. Paajanen, H. Minkkinen, and J. Raukola, Appl. Phys. Lett. 84, 392 (2004).
http://dx.doi.org/10.1063/1.1641171
23.
23.X. Qiu, J. Appl. Phys. 108, 011101 (2010).
http://dx.doi.org/10.1063/1.3457141
24.
24.Z. Hu and H. von Seggern, J. Appl. Phys. 99, 024102 (2006).
http://dx.doi.org/10.1063/1.2161825
25.
25.R. A. P. Altafim, X. Qiu, W. Wirges, R. Gerhard, R. A. C. Altafim, H. C. Basso, W. Jenninger, and J. Wagner, J. Appl. Phys. 106, 014106 (2009).
http://dx.doi.org/10.1063/1.3159039
26.
26.X. Zhang, J. Hillenbrand, and G. M. Sessler, J. Appl. Phys. 101, 054114 (2007).
http://dx.doi.org/10.1063/1.2562413
27.
27.R. Xu and S. G. Kim, “Figures of merits of piezoelectric materials in energy harvesters,” PowerMEMS 2012, Atlanta, GA, USA, December 2-5, 2012, pp. 464-467.
28.
28.X. Zhang, J. Huang, J. Chen, Z Wan, S. Wang, and Z. Xia, Appl. Phys. Lett. 91, 182901 (2007).
http://dx.doi.org/10.1063/1.2803316
29.
29.G. S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G. M. Sessler, M. Paajanen, and J. Lekkala, Appl. Phys. Lett. 77, 3827 (2000).
http://dx.doi.org/10.1063/1.1331348
30.
30.A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 10, 842 (2003).
http://dx.doi.org/10.1109/TDEI.2003.1237333
31.
31.J. Hillenbrand and G. M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 7, 537 (2000).
http://dx.doi.org/10.1109/94.868074
32.
32.R. Kressmann, J. Appl. Phys. 90, 3489 (2001).
http://dx.doi.org/10.1063/1.1398597
33.
33.J. Hillenbrand and G. M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 11, 72 (2004).
http://dx.doi.org/10.1109/TDEI.2004.1266319
34.
34.M. Paajanen, J. Lekkala, and H. Välimäk, IEEE Trans. Dielectr. Electr. Insul. 8, 629 (2001).
http://dx.doi.org/10.1109/94.946715
35.
35.G. M. Sessler and J. Hillbenbrand, Appl. Phys. Lett. 103, 122904 (2013).
http://dx.doi.org/10.1063/1.4821647
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4928039
Loading
/content/aip/journal/adva/5/7/10.1063/1.4928039
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4928039
2015-07-31
2016-09-29

Abstract

Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, ) for a more typical value of 400 pC/N is about 11.2 GPa−1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 W, referred to the acceleration due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4928039.html;jsessionid=O3zw90fWpgJ2PDcfBLIVkabZ.x-aip-live-06?itemId=/content/aip/journal/adva/5/7/10.1063/1.4928039&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4928039&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4928039'
Right1,Right2,Right3,