Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Energy harvesting Technologies, edited by S. Priya and D. J. Inman (Springer, 2009).
2.H. S. Kim, J-H Kim, and J. Kim, Int. J. Precis. Eng. Manuf. 12, 1129 (2011).
3.C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunnc, Energy Environ. Sci. 7, 25 (2014).
4.S. Roundy, P. K. Wright, and J. Rabaey, Comput. Commun. 26, 1131 (2003).
5.P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Proc. IEEE 96, 1457 (2008).
6.A. Erturk and D. J. Inman, Piezoelectric energy harvesting (Wiley, 2011).
7.S. R. Anton and K. M. Farinholt, Proc. ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (Stone Mountain, Georgia, USA).
8.P. Pondrom, J. Hillenbrand, G. M. Sessler, J. Bös, and T. Melz, Appl. Phys. Lett. 104, 172901 (2014).
9.S. R. Anton, K. M. Farinholt, and A. Erturk, J. Intell. Mater. Syst. Struct. 25(14), 1681 (2014).
10.X. Zhang, G. M. Sessler, and Y. Wang, J. Appl. Phys. 116, 074109 (2014).
11.Y. Feng, K. Hagiwara, Y. Iguchi, and Y. Suzuki, Appl. Phys. Lett. 100, 262901 (2012).
12.Y. Wang, L. Wu, and X. Zhang, IEEE Trans. Dielectr. Electr. Insul. 22, 1349 (2015).
13.Z. Luo, D. Zhu, J. Shi, S. Beeby, C. Zhang, P. Proynov, and B. Stark, IEEE Trans. Dielectr. Electr. Insul. 22, 1360 (2015).
14.P. Pondrom, J. Hillenbrand, G. M. Sessler, J. Bös, and T. Melz, IEEE Trans. Dielectr. Electr. Insul. 22, 1470 (2015).
15.S. Bauer, R. Gerhard-Multhaupt, and G. M. Sessler, Phys. Today 57(2), 37 (2004).
16.S. Bauer, IEEE Trans. Dielectr. Electr. Insul. 13, 953 (2006).
17.M. Paajanen, H. Välimäki, and J. Lekkala, in Proceed. 10th Internat. Meeting on Electrets, (1999) p. 735-738.
18.G. M. Sessler and J. Hillenbrand, Appl. Phys. Lett. 75, 3405 (1999).
19.R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 9, 850 (2002).
20.X. Zhang, J. Hillenbrand, and G. M. Sessler, Appl. Phys. Lett. 85, 1226 (2004).
21.X. Zhang, X. W. Zhang, Q. You, and G. M. Sessler, Macromol. Mater. Eng. 299, 290 (2014).
22.M. Wegener, W. Wirges, R. Gerhard-Multhaupt, M. Dansachmüller, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, M. Paajanen, H. Minkkinen, and J. Raukola, Appl. Phys. Lett. 84, 392 (2004).
23.X. Qiu, J. Appl. Phys. 108, 011101 (2010).
24.Z. Hu and H. von Seggern, J. Appl. Phys. 99, 024102 (2006).
25.R. A. P. Altafim, X. Qiu, W. Wirges, R. Gerhard, R. A. C. Altafim, H. C. Basso, W. Jenninger, and J. Wagner, J. Appl. Phys. 106, 014106 (2009).
26.X. Zhang, J. Hillenbrand, and G. M. Sessler, J. Appl. Phys. 101, 054114 (2007).
27.R. Xu and S. G. Kim, “Figures of merits of piezoelectric materials in energy harvesters,” PowerMEMS 2012, Atlanta, GA, USA, December 2-5, 2012, pp. 464-467.
28.X. Zhang, J. Huang, J. Chen, Z Wan, S. Wang, and Z. Xia, Appl. Phys. Lett. 91, 182901 (2007).
29.G. S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G. M. Sessler, M. Paajanen, and J. Lekkala, Appl. Phys. Lett. 77, 3827 (2000).
30.A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 10, 842 (2003).
31.J. Hillenbrand and G. M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 7, 537 (2000).
32.R. Kressmann, J. Appl. Phys. 90, 3489 (2001).
33.J. Hillenbrand and G. M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 11, 72 (2004).
34.M. Paajanen, J. Lekkala, and H. Välimäk, IEEE Trans. Dielectr. Electr. Insul. 8, 629 (2001).
35.G. M. Sessler and J. Hillbenbrand, Appl. Phys. Lett. 103, 122904 (2013).

Data & Media loading...


Article metrics loading...



Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, ) for a more typical value of 400 pC/N is about 11.2 GPa−1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 W, referred to the acceleration due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd