Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Pagliaro, R. Ciriminna, and G. Palmisano, ChemSusChem 1, 880 (2008).
2.S.-B. Kang, Y.-J. Noh, S.-I. Na, and H.-K. Kim, Sol. Energy Mater. Sol. Cells 122, 152 (2014).
3.F. Nickel, T. Haas, E. Wegner, D. Bahro, S. Salehin, O. Kraft, P. A. Gruber, and A. Colsmann, Sol. Energy Mater. Sol. Cells 130, 317 (2014).
4.M. B. Schubert and J. H. Werner, Mater. Today 9, 42 (2006).
5.Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6, 591 (2012).
6.M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, Adv. Funct. Mater. 21, 3019 (2011).
7.G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, J. Appl. Phys. 102 (2007).
8.A. Meyer and H. Ade, J. Appl. Phys. 106, 113101 (2009).
9.J. Kim, S. Jung, and I. Jeong, J. Opt. Soc of Korea 16, 6 (2012).
10.S. Lee, I. Jeong, H. P. Kim, S. Y. Hwang, T. J. Kim, Y. D. Kim, J. Jang, and J. Kim, Sol. Energy Mater. Sol. Cells 118, 9 (2013).
11.L. A. A. Pettersson, L. S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).
12.N. S. Christ, S. W. Kettlitz, S. Valouch, S. Züfle, C. Gärtner, M. Punke, and U. Lemmer, J. Appl. Phys. 105, 104513 (2009).
13.A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, and B. Bouchikhi, Thin Solid Films 304, 39 (1997).
14.E. D. Palik, “Handbook of optical constants of solids,” (1998).
15.J. Mescher, S. W. Kettlitz, N. Christ, M. F. Klein, A. Puetz, A. Mertens, A. Colsmann, and U. Lemmer, Org Electron 15, 1476 (2014).
16.M.F.G. Klein, G.Q. Glasner de Medeiros, P. Kapetana, U. Lemmer, and A. Colsmann, J. Photonics f. Energy 5, 057204 (2015).
17.F. Nickel, C. Sprau, M. F. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, Sol. Energy Mater. Sol. Cells 104, 18 (2012).

Data & Media loading...


Article metrics loading...



In most future organic photovoltaic applications, such as fixed roof installations, facade or clothing integration, the solar cells will face the sun under varying angles. By a combined simulative and experimental study, we investigate the mutual interdependencies of the angle of light incidence, the absorber layer thickness and the photon harvesting efficiency within a typical organic photovoltaic device. For thin absorber layers, we find a steady decrease of the effective photocurrent towards increasing angles. For 90-140 nm thick absorber layers, however, we observe an effective photocurrent enhancement, exhibiting a maximum yield at angles of incidence of about 50°. Both effects mainly originate from the angle-dependent spatial broadening of the optical interference pattern inside the solar cell and a shift of the absorption maximum away from the metal electrode.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd