Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4928095
1.
1.T. Rödig, A. Schönecker, and G. Gerlach, J. Am. Cerm. Soc. 93, 901 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.03702.x
2.
2.N. V. Andreeva, M. Tyunina, A. V. Filimonov, A. I. Rudskoy, N. A. Pertsev, and S. B. Vakhrushev, Appl. Phys. Lett. 104, 112905 (2014).
http://dx.doi.org/10.1063/1.4869147
3.
3.J. W. Chen, X.Y. Zhao, H. W. Zhang, X. B. Li, H. Deng, C. Chen, B. Ren, and H. S. Luo, Ceram. Intern. 41, 6722 (2015).
http://dx.doi.org/10.1016/j.ceramint.2015.01.115
4.
4.J. G. Chen, H. D. Shi, G. X. Liu, J. R. Cheng, and S. X. Dong, J. Allo. Comp. 537, 280 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.05.041
5.
5.L. Y. Wang, W. Ren, P. Shi, X. F. Chen, X. Q. Wu, and X. Yao, Appl. Phys. Lett. 97, 072902 (2010).
http://dx.doi.org/10.1063/1.3479530
6.
6.L. Y. Wang, K. Yao, and W. Ren, Appl. Phys. Lett. 93, 092903 (2008).
http://dx.doi.org/10.1063/1.2978160
7.
7.H. X. Bao, C. Zhou, D. Z. Xue, J. H. Gao, and X. B. Ren, J. Phys. D: Appl. Phys. 43, 465401 (2010).
http://dx.doi.org/10.1088/0022-3727/43/46/465401
8.
8.D. Z. Xue, Y. M. Zhou, H. X. Bao, C. Zhou, J. H. Gao, and X. B Ren, J. Appl. Phys. 109, 054110 (2011).
http://dx.doi.org/10.1063/1.3549173
9.
9.W. Jo, J. E. Daniels, J. L. Jones, X. Li Tan, P. A. Thomas, D. Damjanovic, and J. Rödel, J. Appl. Phys. 109, 014110 (2011).
http://dx.doi.org/10.1063/1.3530737
10.
10.S. K. Acharya, S.-K. Lee, J.-H. Hyung, Y.-H. Yang, B.-H. Kim, and B.-G. Ahn, J. Allo. Comp. 540, 204 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.06.071
11.
11.M. Kosec, B. Malic, A. Bencan, T. Rojac, and J. Tellier, Func. Mater. Lett. 3, 5 (2010).
http://dx.doi.org/10.1142/S1793604710000865
12.
12.Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
13.
13.R. P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, and M. Itoh, Phys. Status Solidi RRL 3(5), 142 (2009).
http://dx.doi.org/10.1002/pssr.200903090
14.
14.X. J. Chen, J. G. Wu, X. P. Wang, B. Y. Zhang, X. J. Lou, X. J. Wang, D. Q. Xiao, and J. G. Zhu, Acs, Appl. Mater. Interface 5, 10409 (2013).
http://dx.doi.org/10.1021/am403448r
15.
15.R. Z. Zuo, C. Ye, and X. S. Fang, Jpn. J .Appl. Phys. 46(10A), 6733 (2007).
http://dx.doi.org/10.1143/JJAP.46.6733
16.
16.X. Sun, J. Deng, C. Sun, J. Li, J. Chen, R. Yu, G. Liu, X. Xing, and L. Qiao, J. Am. Ceram. Soc. 92(8), 1853 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03096.x
17.
17.K. Yan, K. Matsumot, T. Karaki, and M. Adachi, J. Am. Ceram. Soc. 93, 3823 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.03932.x
18.
18.T. Karaki, T. Katayama, K. Yoshida, S. Maruyama, and M. Adachi, Jpn. J. Appl. Phys. 52, 09KD11 (2013).
http://dx.doi.org/10.7567/JJAP.52.09KD11
19.
19.L. Y. Wang, W. Ren, P. C. Goh, K. Yao, P. Shi, X. Q. Wu, and X. Yao, Thin Solid Films 537, 69 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.04.045
20.
20.L. Y. Wang, W. Ren, P. Shi, and X. Q. Wu, J. Allo. Comp. 608, 202 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.04.118
21.
21.X. Zhao, J. Y. Dai, X. G. Tang, J. Wang, H. L. W. Chan, and C. L. Choy, Appl. Phys. A: Mater. Sci. Process. 81, 997 (2005).
http://dx.doi.org/10.1007/s00339-004-2977-3
22.
22.C. Loppadner, F. Schlaphof, S. Schneider, U. Zerweek, S. Grafdtrom, L. M. Eng, A. Roelofs, and R. Waster, Surf. Sci. 483, 532 (2003).
23.
23.Z. X. Zhu, J. F. Li, Y. Y. Liu, and J. Y. Li, Acta Materialia 57, 4288 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.05.027
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4928095
Loading
/content/aip/journal/adva/5/7/10.1063/1.4928095
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4928095
2015-07-31
2016-09-25

Abstract

The lead-free piezoelectric 0.915K Na NbO-0.075BaZrO-0.01Bi Na TiO (0.915KNN-0.075BZ-0.01BNT) films were prepared by a chemical solution deposition method. The films possess a pure rhomobohedral perovskite phase and a dense surface without crack. The temperature-dependent dielectric properties of the specimens manifest that only phase transition from ferroelectric to paraelectric phase occurred and the Curie temperature is 217 oC. The temperature stability of ferroelectric phase was also supported by the stable piezoelectric properties of the films. These results suggest that the slope of the morphotropic phase boundary (MPB) for the solid solution formed with the KNN and BZ in the films should be vertical. The voltage-induced polarization switching, and a distinct piezo-response suggested that the 0.915 KNN-0.075BZ-0.01BNT films show good piezoelectric properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4928095.html;jsessionid=kQ45xxQ2K8Lrl-dKK14ogdTl.x-aip-live-06?itemId=/content/aip/journal/adva/5/7/10.1063/1.4928095&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4928095&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4928095'
Right1,Right2,Right3,