Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/7/10.1063/1.4928097
1.
1.H.J. Leamy, J. Appl. Phys. 53, R51 (1982).
http://dx.doi.org/10.1063/1.331667
2.
2.SEM Microcharacterization of Semiconductors, edited by D.B. Holt and D.C. Joy (Academic Press, London, 1989).
3.
3.R. Scheer, C. Knieper, and L. Stolt, Appl. Phys. Lett. 67, 3007 (1995).
http://dx.doi.org/10.1063/1.114934
4.
4.O. Breitenstein, J. Bauer, and J. P. Rakotoniaina, Semiconductors 41, 440 (2007).
http://dx.doi.org/10.1134/S106378260704015X
5.
5.O. Breitenstein, J. Bauer, M. Kittler, T. Arguirov, and W. Seifert, Scanning 30, 331 (2008).
http://dx.doi.org/10.1002/sca.20112
6.
6.J. Kavalakkatt, D. Abou-Ras, J. Haarstrich, C. Ronning, M. Nichterwitz, R. Caballero, T. Rissom, T. Unold, R. Scheer, and H. W. Schock, J. Appl. Phys. 115, 014504 (2014).
http://dx.doi.org/10.1063/1.4858393
7.
7.C. Donolato, Appl Phys Lett 43, 120 (1983).
http://dx.doi.org/10.1063/1.94139
8.
8.C. Donolato, phys. stat. sol. (a) 65, 649 (1981).
http://dx.doi.org/10.1002/pssa.2210650231
9.
9.K.L. Luke, O. von Roos, and L. Cheng, J. Appl. Phys. 57, 1978 (1985).
http://dx.doi.org/10.1063/1.334382
10.
10.R. Scheer, Solid State Phen. 67-68, 57 (1999).
http://dx.doi.org/10.4028/www.scientific.net/SSP.67-68.57
11.
11.N.C. MacDonald and T.E. Everhart, Appl. Phys. Lett. 7, 267 (1965).
http://dx.doi.org/10.1063/1.1754252
12.
12.T. Sekiguchi and K. Sumino, Rev. Sci. Instrum. 66, 4277 (1995).
http://dx.doi.org/10.1063/1.1145382
13.
13.S.M. Sze, Physics of semiconductor devices (Wiley, New York, 1981).
14.
14.R. Scheer, M. Wilhelm, H.J. Lewerenz, H.W. Schock, and L. Stolt, Sol. En. Mater. Sol. Cells 49, 299 (1997).
http://dx.doi.org/10.1016/S0927-0248(97)00057-3
15.
15.J. Rechid, A. Kampmann, and R. Reineke-Koch, Thin Solid Films 361-362, 198 (2000).
http://dx.doi.org/10.1016/S0040-6090(99)00793-2
16.
16.R. Kniese, M. Powalla, and U. Rau, Thin Solid Films 515, 6163 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.045
17.
17.M. Nichterwitz, R. Caballero, C.A. Kaufmann, H.-W. Schock, and T. Unold, J. Appl. Phys. 113, 044515 (2013).
http://dx.doi.org/10.1063/1.4788827
18.
18.A. Harb, Bachelor thesis, KIT, Karlsruhe, Germany, 2014.
19.
19.R. Caballero, C.A. Kaufmann, V. Efimova, T. Rissom, V. Hoffmann, and H. W. Schock, Progr. Photovolt.: Res. Appl. 21, 30 (2013).
http://dx.doi.org/10.1002/pip.1233
20.
20.S. Brunken, D. Greiner, H. Allaf Navirian, C.A. Kaufmann, and T. Unold, in Conference Record of the 40th IEEE Photovoltaic Specialists Conference and Exhibition, Denver, CO, USA, June 8-13, 2014. p. 3629.
21.
21.M. Nichterwitz and T. Unold, J. Appl. Phys. 114, 134504 (2013).
http://dx.doi.org/10.1063/1.4823519
22.
22.M. Nichterwitz, R. Caballero, C.A. Kaufmann, H.-W. Schock, and T. Unold, J. Appl. Phys. 113, 044515 (2013).
http://dx.doi.org/10.1063/1.4788827
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4928097 for all measured and simulated EBIC profiles for various applied voltages and doping levels in the CuInSe2 layers.[Supplementary Material]
24.
24.P.W. Li, R.A. Anderson, and R.H. Plovnick, J. Phys. Chem. Solids 40, 333 (1979).
http://dx.doi.org/10.1016/0022-3697(79)90113-6
25.
25.M.H. Kutner, C.J. Nachtsheim, J. Neter, and W. Li, Applied linear statistical models, 5th ed. (McGrawHill/Irwin, New York, 2005).
26.
26.A.L. Fahrenbruch and R.H. Bube, Fundamentals of solar cells: Photovoltaic solar energy conversion (Academic Press, New York, 1983).
27.
27.R. Scheer and H.-W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (Wiley-VCH, Weinheim, 2011).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/7/10.1063/1.4928097
Loading
/content/aip/journal/adva/5/7/10.1063/1.4928097
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/7/10.1063/1.4928097
2015-07-31
2016-09-27

Abstract

Electron-beam-induced current (EBIC) measurements have been employed for the investigation of the local electrical properties existing at various types of electrical junctions during the past decades. In the standard configuration, the device under investigation is analyzed under short-circuit conditions. Further insight into the function of the electrical junction can be obtained when applying a bias voltage. The present work gives insight into how EBIC measurements at applied bias can be conducted at the submicrometer level, at the example of CuInSe solar cells. From the EBIC profiles acquired across ZnO/CdS/CuInSe/Mo stacks exhibiting - junctions with different net doping densities in the CuInSe layers, values for the width of the space-charge region, , were extracted. For all net doping densities, these values decreased with increasing applied voltage. Assuming a linear relationship between 2 and the applied voltage, the resulting net doping densities agreed well with the ones obtained by means of capacitance-voltage measurements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/7/1.4928097.html;jsessionid=0UX5oFZYiB6P7b2v8hr_P51y.x-aip-live-06?itemId=/content/aip/journal/adva/5/7/10.1063/1.4928097&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/7/10.1063/1.4928097&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/7/10.1063/1.4928097'
Right1,Right2,Right3,