Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnology 21, 13691377 (2003).
2.M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” Journal of Neurophysiology 91, 19081912 (2004).
3.D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Optics Express 17, 1335413364 (2009).
4.W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 7376 (1990).
5.W. Denk and K. Svoboda, “Photon upmanship: Why multiphoton imaging is more than a gimmick,” Neuron 18, 351357 (1997).
6.F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods 2, 932940 (2005).
7.E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nature Photonics 7, 93101 (2013).
8.X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nature Protocols 7, 654669 (2012).
9.D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Optics Letters 30, 21342136 (2005).
10.D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nature Methods 3, 4753 (2006).
11.F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Investigative Ophthalmology & Visual Science 51, 24592465 (2010).
12.R. W. Boyd, Nonlinear Optics, 3rd ed. , edited by Boyd (Elsevier Inc., 2008).
13.G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomedical Optics Express 3, 115 (2011).
14.P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophysical Journal 81, 493508 (2002).
15.W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” PNAS 100, 70757080 (2003).
16.W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Science Direct - Methods 29, 97109 (2003).
17.J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).
18.G. Wollensak, E. Spoerl, and T. Seiler, “Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus,” American Journal of Ophthalmology 135, 620627 (2003).
19.H. Zhu, T. Wang, W. Zheng, P. Yuan, L. Qian, and D. Fan, “Efficient second harmonic generation of femtosecond laser at 1 μm,” Optics Express 12, 21502155 (2004).
20.J. Zhang, J. Y. Huang, H. Wang, K. S. Wong, and G. K. Wong, “Second-harmonic generation from regeneratively amplified femtosecond laser pulses in BBO and LBO crystals,” J. Opt. Soc. Am. B 15, 200209 (1998).
21.J. P. Farrell, L. S. Spector, B. K. McFarland, P. H. Bucksbaum, M. Gühr, M. B. Gaarde, and K. J. Schafer, “Influence of phase matching on the cooper minimum in Ar high-order harmonic spectra,” Phys. Rev. A 83, 023420 (2011).
22.R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in second harmonic generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology,” Optics Communications 281, 18231832 (2008).

Data & Media loading...


Article metrics loading...



Multimodal nonlinear microscopy allows imaging of highly ordered biological tissue due to spectral separation of nonlinear signals. This requires certain knowledge about the spectral distribution of the different nonlinear signals. In contrast to several publications we demonstrate a factor of relating the full width at half maximum of a gaussian laser pulse spectrum to the corresponding second harmonic pulse spectrum in the spatial domain by using a simple theoretical model. Experiments on monopotassium phosphate crystals (KDP-crystals) and on porcine corneal tissue support our theoretical predictions. Furthermore, no differences in spectral width were found for epi- and trans-detection of the second harmonic signal. Overall, these results may help to build an optimized multiphoton setup for spectral separation of nonlinear signals.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd