Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A. B. Shick, and T. Jungwirth, Nat. Mater. 10, 347 (2011).
2.L. Q. Liu, C.F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
3.W. G. Wang, M. G. Li, S. Hageman, and C. L. Chien, Nature Mater. 11, 64 (2012).
4.I. M. Miron, K. Garello, G. Gaudin, P.J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Nature 476, 189 (2011).
5.H. D. Gan, H. Sato, M. Yamanouchi, S. Ikeda, K. Miura, R. Koizumi, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 99, 252507 (2011).
6.A. Ozbay, A. Gokce, T. Flanagan, R. A. Stearrett, E. R. Nowak, and C. Nordman, Appl. Phys. Lett. 94, 202506 (2009).
7.J. Včelák, R. Ripka, J. Kubík, A. Plantil, and P. Kašpar, Sens. Actuators A123–124, 122 (2005).
8.J. F. Feng, Z. Diao, Gen Feng, E. R. Nowak, and J. M. D. Coey, Appl. Phys. Lett. 96, 052504 (2010).
9.F. G. Aliev, R. Guerrero, D. Herranz, R. Villar, F. Greullet, C. Tiusan, and M. Hehn, Appl. Phys. Lett. 91, 232504 (2007).
10.L. Ding, J. Teng, X. C. Wang, C. Feng, Y. Jiang, G. H. Yu, S. G. Wang, and R. C. C. Ward, Appl. Phys. Lett. 96, 052515 (2010).
11.J Y Bae, W C Lim, H J Kim et al., J. Appl. Phys. 99, 08T316 (2006).
12.S. L. Zhang, J. Teng, J. Y. Zhang, Y. Liu, J. W. Li, G. H. Yu, and S. G. Wang, Appl. Phys. Lett. 97, 22250 (2010).
13.Z. Diao, J. F. Feng, H. Kurt, G. Feng, and J. M. D. Coey, Appl. Phys. Lett. 96, 202506 (2010).
14.D. Herranz, F. Bonell, A. Gomez-Ibarlucea, S. Andrieu, F. Montaigne, R. Villar, C. Tiusan, and F. G. Aliev, Appl. Phys. Lett 96, 202501 (2010).
15.Stearrett Ryan, W G Wang, L R Shah et al., J. Appl. Phys. 107, 064502 (2010).
16.Chong-Jun Zhao, Yang Liu, Jing-Yan Zhang, Li Sun, Lei Ding, Peng Zhang, Bao-Yi Wang, Xing-Zhong Cao, and Guang-Hua Yu, Appl. Phys. Lett. 101, 072404 (2012).
17.X. Z. Cao, B. Y. Wang, R. S. Yu, C. F. Wei, D. S. Xue, and L. Wei, HEP&NP 28, 560-563 (2004).
18.Y. Q. ke, K. Xia, and H. Guo, Phys. Rev. Lett. 105, 236801 (2010).
19.S. J. Zinkle and C. Kinsohita, J. Nucl. Mater. 251, 200 (1997).

Data & Media loading...


Article metrics loading...



Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd