Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928208
1.
1.B.S. Lement, B. L. Aberbach, and M. Cohen, Trans ASM 47, 291-319 (1955).
2.
2.F.E. Werner, B.L. Aberbach, and M. Cohen, Trans ASM 49, 823-841 (1957).
3.
3.Y. Hirotsu and S. Nagakura, 20, 645-655 (1972).
4.
4.Y. Hirotsu and S. Nagakura, Trans Japan Inst Met 15, 129-134 (1974).
http://dx.doi.org/10.2320/matertrans1960.15.129
5.
5.B.J. Wood, “Carbon in the core,” Earth Plan Sci Lett 117, 593-607 (1993).
http://dx.doi.org/10.1016/0012-821X(93)90105-I
6.
6.X. Song, Rev Geophysics 37, 297-313 (1997).
http://dx.doi.org/10.1029/97RG01285
7.
7.M. Mookherjee, American Mineralogist 96, 1530-1536 (2011).
http://dx.doi.org/10.2138/am.2011.3917
9.
9.G.B. Olson, Acta Mater 61, 771-781 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.10.045
10.
10.L. Kaufman and J. Ågren, Scripta Mater 70, 3-6 (2014).
http://dx.doi.org/10.1016/j.scriptamat.2012.12.003
11.
11.H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics. The Calphad Method (Cambridge University Press, Cambridge, UK, 2007).
12.
12.G. Ghosh, A. van de Walle, and M. Asta, Acta Mater 56, 3202-3221 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.03.006
13.
13.G. Ghosh and G.B. Olson, J Phase Equi 22, 199-207 (2001).
http://dx.doi.org/10.1361/105497101770338653
14.
14.G. Ghosh and G.B. Olson, Acta Mater 50, 2655-2675 (2002).
http://dx.doi.org/10.1016/S1359-6454(02)00096-4
15.
15.G. Ghosh, kMART Database (also MART, MART1, MART2, MART3, MART4, MART5, martGG), Unpublished Research, Northwestern University, 1990-2000.
16.
16.G. B. Olson, 277, 1237-1242 (1997).
17.
17.F. Laszlo and H. Nolle, J Mech Phys Solids 7, 193-194 (1959).
http://dx.doi.org/10.1016/0022-5096(59)90006-7
18.
18.T. Hanabusa, J. Fukura, and H. Fujiwara, Bull JSME 12, 931-939 (1969).
http://dx.doi.org/10.1299/jsme1958.12.931
19.
19.B.M. Drapkin and B.V. Fokin, 49, 180-183 (1980).
20.
20.A. Kagawa, T. Okamoto, and H. Matsumoto, Acta Mater 35, 797-803 (1987).
http://dx.doi.org/10.1016/0001-6160(87)90157-X
21.
21.J.S. Li, M. Ishihara, H. Yumoto, T. Aizawa, and M. Shimotomai, Thin Solid Films 316, 100-104 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00397-6
22.
22.H. Mizubayashi, S. Li, H. Yumoto, and M. Shimitomai, Scripta Mater 40, 773-777 (1999).
http://dx.doi.org/10.1016/S1359-6462(99)00003-2
23.
23.M. Umemoto, Z.G. Liu, H. Takaoka, M. Sawakami, K. Tsuchiya, and K. Masuyama, Metall Mater Trans 32A, 2127-2131 (2001).
http://dx.doi.org/10.1007/s11661-001-0024-y
24.
24.M. Umemoto, Z.G. Liu, K. Masuyama, and K. Tsuchiya, Scripta Mater 45, 391-397 (2001).
http://dx.doi.org/10.1016/S1359-6462(01)01016-8
25.
25.M. Umemoto and K. Tsuchiya, Tetsu-to-Hagané 88, 117-128 (2002).
26.
26.S.P. Dodd, G.A. Saunders, M. Chakurtaran, B. James, and M. Acet, Phys Stat Sol (a) 198, 272-281 (2003).
http://dx.doi.org/10.1002/pssa.200306613
27.
27.M. Umemoto, Y. Todaka, T. Takahashi, P. Li, R. Tokumiya, and K. Tsuchiya, J Metastable and Nanocryst Mater 15-16, 607-614 (2003).
http://dx.doi.org/10.4028/www.scientific.net/JMNM.15-16.607
28.
28.M Umemoto, Y Todaka, and K. Tsuchiya, Mater Sci Forum 426-432, 859-864 (2003).
http://dx.doi.org/10.4028/www.scientific.net/MSF.426-432.859
29.
29.H. Ledbetter, Mater Sci Eng A 527, 2657-2661 (2010).
http://dx.doi.org/10.1016/j.msea.2009.12.034
30.
30.A. Inoue, T. Ogura, and T. Masumoto, Trans JIM 17, 149-157 (1976).
31.
31.A Inoue, T. Ogura, and T. Masumoto, Trans JIM 17, 663-672 (1976).
32.
32.J. Häglund, G. Grimvall, and T. Jarlborg, Phys Rev B 44, 2914-2919 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.2914
33.
33.L. Vočadlo, J. Brodholt, D.P. Dobson, K.S. Knight, W.G. Marshall, G.D. Price, and I.G. Wood, Earth Planet Sci Lett 203, 567-575 (2002).
http://dx.doi.org/10.1016/S0012-821X(02)00839-7
34.
34.W.C. Chiou, Jr. and E.A. Carter, Surface Sci 530, 87-100 (2003).
http://dx.doi.org/10.1016/S0039-6028(03)00352-2
35.
35.S. Khmelevskyi, A.V. Ruban, and P. Mohn, J Phys.: Condens. Matter 17, 7345-7352 (2005).
http://dx.doi.org/10.1088/0953-8984/17/46/018
36.
36.H.I. Faraoun, Y.D. Zhang, C. Esling, and H. Aourag, J Appl Phys 99, 093508-1 to 093508-8 (2006).
http://dx.doi.org/10.1063/1.2194118
37.
37.C. Jiang, S.G. Srinivasan, A. Caro, and S.A. Maloy, J Appl Phys 103, 043502-1 to 043502-8 (2008).
http://dx.doi.org/10.1063/1.2884529
38.
38.M. Nikolussi, S.L. Shang, T. Gressmann, A. Leineweber, E.J. Mittemeijer, Y. Wang, and Z.-K. Liu, Scripta Mater 59, 814-817 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2008.06.015
39.
39.Z.Q. Lv, F.C. Zhang, S.H. Sun, Z.H. Wang, P. Jiang, W.H. Zhang, and W.T. Fu, Comp Mater Sci 44, 690-694 (2008).
http://dx.doi.org/10.1016/j.commatsci.2008.05.006
40.
40.J.H. Jang, I.G. Kim, and H.K.D.H. Bhadeshia, Comp Mater Sci 44, 1319-1326 (2009).
http://dx.doi.org/10.1016/j.commatsci.2008.08.022
41.
41.C. K. Ande and M. H. F. Sluiter, Acta Mater 58, 6276-6281 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.07.049
42.
42.C. M. Fang, M.H.F. Sluiter, M.A. van Huis, C.K. Ande, and H.W. Zandbergen, Phys Rev Lett 105, 055503-1 to 055503-4 (2010).
43.
43.G. Ghosh, C.E. Campbell, and G.B. Olson, Metall Mater Trans A 30A, 501-512 (1999).
http://dx.doi.org/10.1007/s11661-999-0042-8
44.
44.G. Ghosh and G.B. Olson, Metall Mater Trans A 32A, 455-467 (2001).
http://dx.doi.org/10.1007/s11661-001-0062-5
45.
45.G. Ghosh and G.B. Olson, Acta Mater 50, 2099-2119 (2002).
http://dx.doi.org/10.1016/S1359-6454(02)00054-X
46.
46.G. Kresse and J. Hafner, Phy Rev B 49, 14251-14269 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
47.
47.G. Kresse and J. Furthmüller, Phy Rev B 54B, 11169-11186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
48.
48.G. Kresse and J. Furthmüller, Computational Materials Science 6, 15-50 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
49.
49.V. I. Razumovskiy and G. Ghosh, Computational Materials Science, 2015 (Submitted).
50.
50.P. E. Blöchl, Phys Rev B 50B, 17953-17979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
51.
51.J.P. Perdew, in Electronic structure of solids ’91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin (Germany), 1991).
52.
52.S.H. Vosko, L. Wilk, and M. Nusair, Can J Phys 58, 1200-1211 (1980).
http://dx.doi.org/10.1139/p80-159
53.
53.P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, J Phys:Condens Matter 1, 1941-1963 (1989).
http://dx.doi.org/10.1088/0953-8984/1/11/002
54.
54.O. H. Nielsen and R. M. Martin, Phys Rev Lett 50, 697-700 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.697
55.
55.O. H. Nielsen and R. M. Martin, Phys Rev B 32B, 3780-3791 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.3780
56.
56.Y. Le Page and P. Saxe, Phys Rev B 63B, 174103-1 to 174103-8 (2001).
57.
57.Y. Le Page and P. Saxe, Phys Rev B 65B, 104104-1 to 104104-14 (2002).
58.
58.R. Golesorkhtabar, O. Pavone, J. Spitaler, P. Pushnig, and C. Draxl, Comp Phys Commn 184, 1861-1873 (2013).
http://dx.doi.org/10.1016/j.cpc.2013.03.010
59.
59.H.P. Scott, Q. Williams, and E. Knittle, Geophys Res Lett 28, 1875-1878 (2001).
http://dx.doi.org/10.1029/2000GL012606
60.
60.J. Li, H.K. Mao, Y. Fei, E. Gregoryanz, M. Tremets, and C.S. Zha, Phys Chem Miner 29, 166-169 (2002).
http://dx.doi.org/10.1007/s00269-001-0224-4
61.
61.I.G. Wood, V. Lidunka, K.S. Knight, D.P. Dobson, W.G. Marshall, G.D. Proce, and J. Brodholt, J Appl Crys 37, 82-90 (2004).
http://dx.doi.org/10.1107/S0021889803024695
62.
62.D. Fruchart, P. Chaudouet, R. Fruchart, A. Rouault, and A. Senateur, J Solid State Chem 51, 246-252 (1984).
http://dx.doi.org/10.1016/0022-4596(84)90340-2
63.
63.D. Meinhardt and O. Krisement, Arch Eisenhuttenwes 33, 493-499 (1962).
64.
64.F.H. Herbstein and J. Smults, Acta Crys 17, 1331-1332 (1964).
http://dx.doi.org/10.1107/S0365110X64003346
65.
65.M. Picon and M. Flahaut, Comp Rend 245, 534-537 (1957).
66.
66.J. P. Bouchaud, Ann. Chim. (Paris) 2(6), 353-366 (1967).
67.
67.D. C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).
68.
68.G. Grimvall, B. Magiyari-Köpe, V. Ozolins, and K. A. Perssons, Rev. of Mod Physics 84, 945-986 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.945
69.
69.W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig (Germany), 1928).
70.
70.A. Reuss, Angew Z. Math Phys 9, 49-58 (1929).
http://dx.doi.org/10.1002/zamm.19290090104
71.
71.R. Hill, Proc Phys Soc (London) 65A, 349-354 (1952).
http://dx.doi.org/10.1088/0370-1298/65/5/307
72.
72.D. H. Chung, Phil Mag 8, 833-841 (1963).
http://dx.doi.org/10.1080/14786436308213840
73.
73.M. Kumazawa, J Geophys Res 74, 5311-5320 (1969).
http://dx.doi.org/10.1029/JB074i022p05311
74.
74.M. M. Shukla and N. T. Padial, Revista Brasiliera de Fisica 3, 39-45 (1973).
75.
75.Z. Hashin, J Appl Mech 29, 143-150 (1962).
http://dx.doi.org/10.1115/1.3636446
76.
76.Z. Hashin and S. Shtrikman, J Mech Phys Solids 10, 335-342 (1962).
http://dx.doi.org/10.1016/0022-5096(62)90004-2
77.
77.Z. Hashin and S. Shtrikman, J Mech Phys Solids 11, 127-240 (1963).
http://dx.doi.org/10.1016/0022-5096(63)90060-7
78.
78.G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (The MIT Press, Cambridge, MA, 1971).
79.
79.J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Metrices (Oxford University Press, Oxford,UK, 1985).
80.
80.P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J Applied Physics 84, 4891-4904 (1998).
http://dx.doi.org/10.1063/1.368733
81.
81.W.C. Oliver and G.M. Pharr, J Mater Res 7, 1564-1583 (1992).
http://dx.doi.org/10.1557/JMR.1992.1564
82.
82.H. Kudielka, Arch Eisenhüttenwes 37, 759-766 (1966).
83.
83.V.G. Rivlin VG, Phase Equilibria in Iron Ternary Alloys (Inst of Metals, London,UK, 1988).
84.
84.D.G. Clerc and H.M. Ledbetter, J Physics Chemistry Solids 59, 1071-1095 (1998).
http://dx.doi.org/10.1016/S0022-3697(97)00251-5
85.
85.A. Kagawa and T. Okamoto, Trans Japan Institute of Metals 18, 659-666 (1983).
86.
86.A. Kagawa and T. Okamoto, J Materials Science 18, 225-230 (1983).
http://dx.doi.org/10.1007/BF00543829
87.
87.D.H. Chung and W.R. Buessem, J Applied Physics 38, 2010-2012 (1967).
http://dx.doi.org/10.1063/1.1709819
88.
88.S. F. Pugh, Philosophical Magazine 45, 823-843 (1954).
http://dx.doi.org/10.1080/14786440808520496
89.
89.D.G. Pettifor, Mater Science Technology 8, 345-349 (1992).
http://dx.doi.org/10.1179/mst.1992.8.4.345
90.
90.D. Nguyen-Mahn, D. G. Pettifor, S. Znam, and V. Vitek, in Tight-Binding Approach to Computational Material Science, edited by P.E.A. Turch, A. Gonis, and L. Colombo (Materials Research Soceity, Warrendale,PA, 1998), Vol. 491.
91.
91.T.C.T. Ting and T. Chen, Quarterly J Mechanics Applied Mathematics 58, 73-82 (2005).
http://dx.doi.org/10.1093/qjmamj/hbh021
92.
92.M. Rovati, Scripta Materialia 48, 235-240 (2003).
http://dx.doi.org/10.1016/S1359-6462(02)00386-X
93.
93.W. Koster and H. Franz, Metallurgical Review 6, 1-56 (1961).
94.
94.M.H. Ledbetter, in Materials at Low Temperatures, edited by R.P. Reed and A.F. Clarck (American Society for Metals, Metals Park, OH, 1983).
95.
95.I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, in Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, edited by I.N. Frantsevich (Naukova Dumka, Kiev, 1983).
96.
96.P. Joardar, S. Chatterjee, and S. Chakraborty, Indian J Physics, A 54, 433 (1980).
97.
97.T. Maxisch and G. Ceder, Physical Review B 73B, 174112-1-17411-4 (2006).
98.
98.E. Schreiber, O.L. Anderson, and N. Soga, Elastic constants and their measurements (McGraw-Hill, New York, 1973).
99.
99.A. F. Gillermet and G. Grimvall, J Physics Chemistry of Solids 53, 105-125 (1992).
http://dx.doi.org/10.1016/0022-3697(92)90019-A
100.
100.A.P. Miodownik, Mater Science Technology 10, 190-192 (1994).
http://dx.doi.org/10.1179/mst.1994.10.3.190
101.
101. The kMART database and its predecessors named MART, MART1, MART2, MART3, MART4, MART5 and mart GG are unpublished and intellectual properties of the author.13,15
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928208
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928208
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928208
2015-08-10
2016-12-06

Abstract

A comprehensive computational study of elastic properties of cementite (FeC) and its alloyed counterparts (MC (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, CrFeC and CrFeC) having the crystal structure of FeC is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C, of above MCs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated Cs, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline)elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of MCs by homogenization of calculated Cs; and (iv) acoustic Debye temperature, θ, of MCs based on calculated Cs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928208.html;jsessionid=FIh_augOv1iBZpLExjmLG2FM.x-aip-live-06?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928208&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928208&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928208'
Right1,Right2,Right3,