Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928284
1.
1.Y. Tokura, (ed) Colossal Magnetoresistive Oxides (Gordon and Breach, London, 2000).
2.
2.J. W. Lynn, R. W. Erwin, J. A. Borchers, Q. Huang, A. Santoro, J-L. Peng, and Z. Y. Li, Phys. Rev. Lett. 76, 4046 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4046
3.
3.M. Uehara, S. Mori, C.H. Chen, and S.-W. Cheong, Nature (London) 399, 560 (1999).
http://dx.doi.org/10.1038/21142
4.
4.P. Dutta, P. Dey, and T. K. Nath, J. Appl. Phys. 102, 073906 (2007).
http://dx.doi.org/10.1063/1.2786706
5.
5.X. H. Huang, J. F. Ding, Z. L. Jiang, Y. W. Yin, Q. X. Yu, and X. G. Li, J. Appl. Phys. 106, 083904 (2009).
http://dx.doi.org/10.1063/1.3246869
6.
6.D. Kim, B. Revaz, B. L. Zink, F. Hellman, J. J. Rhyne, and J. F. Mitchell, Phys.Rev. Lett. 89, 227202 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.227202
7.
7.N. Panopoulos, D. Koumoulis, G. Diamantopoulos, M. Belesi, M. Fardis, M. Pissas, and G. Papavassiliou, Phys. Rev. B 82, 235102 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.235102
8.
8.C. P. Adams, J. W. Lynn, V. N. Smolyaninova, A. Biswas, R. L. Greene, W. Ratcliff II, S-W. Cheong, Y. M. Mukovskii, and D. A. Shulyatev, Phys. Rev. B 70, 134414 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.134414
9.
9.T. Sarkar, A. K. Raychaudhuri, A. K. Bera, and S. M. Yusuf, arXiv:0804.3641 [cond-mat.str-el].
10.
10.Z. Zeng, M. Greenblatt, and M. Croft, Phys. Rev. B 59, 8784 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8784
11.
11.M.C. Walsh, M. Foldeaki, A. Giguere, D. Bahadur, S. K. Mandal, and R.A. Dunlap, Physica B 253, 103 (1998).
http://dx.doi.org/10.1016/S0921-4526(98)00374-3
12.
12.S. Roßler, U. K. Roßler, K. Nenkov, D. Eckert, S. M. Yusuf, K. Dorr, and K-H. Muller, Phys. Rev. B 70, 104417 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.104417
13.
13.M. Anwar, F. Ahmed, S. R. Lee, R. Danish, and B. Koo, J. J. Appl. Phys. 52, 10MC12 (2013).
http://dx.doi.org/10.7567/JJAP.52.10MC12
14.
14.T. J. Sato, J.W. Lynn, and B. Dabrowski, Phys. Rev. Lett. 93, 267204 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.267204
15.
15.J. R. Sun, J. Gao, Y. Fei, R. W. Li, and B. G. Shen, Phys. Rev. B 67, 144414 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.144414
16.
16.R. Thiyagarajan, S. Esakki Muthu, S. K. Barik, R. Mahendiran, and S. Arumugam, J. Appl. Phys. 113, 023904 (2013).
http://dx.doi.org/10.1063/1.4774107
17.
17.Z.C. Xia, L.X. Xiao, C.H. Fang, G. Liu, B. Dong, D.W. Liu, L. Chen, L. Liu, S. Liu, D. Doyananda, C.Q. Tang, and S.L. Yuan, J. Magn. Magn. Mater. 297, 1 (2006).
http://dx.doi.org/10.1016/j.jmmm.2005.02.005
18.
18.S. Atalay, V.S. Kolat, H. Gencer, and H.I. Adiguzel, J. Magn. Magn. Mater. 305, 452 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.02.082
19.
19.Z. Xia, B. Chen, Y. Wu, Z. Ouyang, Y. Wu, L. Xiao, J. Huang, L. Shi, C. Shang, Z. Jin, and L. Li, Appl. Phys. Lett. 102, 192408 (2013).
http://dx.doi.org/10.1063/1.4805006
20.
20.H. Gencer, S. Atalay, H.I. Adiguzel, and V.S. Kolat, Physica B 357, 326 (2005).
http://dx.doi.org/10.1016/j.physb.2004.11.084
21.
21.J. R. Sun, J. Gao, and L. Kang, Appl. Phys. Lett. 81, 508 (2002).
http://dx.doi.org/10.1063/1.1494109
22.
22.Q. Q. Cao, J. Wu, K. M. Gu, S. Y. Zhang, and Y. W. Du, J. Appl. Phys. 85, 4494 (1999).
http://dx.doi.org/10.1063/1.370386
23.
23.G. Huanyin, L. Ning, Y. Guoqing, and T. Wei, J. Rare Earths 24, 206 (2006).
http://dx.doi.org/10.1016/S1002-0721(06)60095-1
24.
24.S. Qixiang, W. Guiying, Y. Guoqing, M. Qiang, W. Wenqi, and P. Zhensheng, J. Rare Earths 6, 821 (2008).
25.
25.T. Zhang, C. Jin, J. Zhang, X. Lu, T. Qian, and X. Li, Nanotechnology 16, 2743 (2005).
http://dx.doi.org/10.1088/0957-4484/16/11/047
26.
26.J. Kurian and R Singh, J .Phys. D: Appl. Phys. 41, 215006 (2008).
http://dx.doi.org/10.1088/0022-3727/41/21/215006
27.
27.A. Ramesh and R. Singh, IEEE Trans. Magn. 48, 4562 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2197374
28.
28.A. Ramesh and R. Singh, Physica B 448, 273 (2014).
http://dx.doi.org/10.1016/j.physb.2014.03.060
29.
29.J. Kurian and R. Singh, J. Appl. Phys. 103, 07F707 (2008).
http://dx.doi.org/10.1063/1.2831325
30.
30.M.T. Causa, M. Tovar, A. Caneiro, F. Prado, G. Ibanez, C. A. Ramos, A. Butera, B. Alascio, X. Obradors, S. Pinol, Y. Tokura, and S. B. Oseroff, Phys. Rev. B 58, 3233 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.3233
31.
31.A. I. Shames, E. Rozenberg, W. H. Mc Carroll, M. Greenblatt, and G. Gorodetsky, Phys. Rev. B 64, 172401 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.172401
32.
32.N. O. Moreno, P. G. Pagliuso, C. Rettori, J. S. Gardner, J. L. Sarrao, J. D. Thompson, D. L. Huber, J. F. Mitchell, J. J. Martinez, and S. B. Oseroff, Phys. Rev. B 63, 174413 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.174413
33.
33.M. Fath, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, Science 285, 1540 (1999).
http://dx.doi.org/10.1126/science.285.5433.1540
34.
34.M. Auslender, A. I. Shames, E. Rozenberg, E. Sominski, A. Gedanken, and Ya. M. Mukovskii, J. Appl. Phys. 107, 09D702 (2010).
http://dx.doi.org/10.1063/1.3335949
35.
35.D. L. Huber, G. Alejandro, A. Caneiro, M. T. Causa, F. Prado, M. Tovar, and S. B. Oseroff, Phys. Rev. B 60, 12155 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.12155
36.
36.R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
http://dx.doi.org/10.1103/PhysRevLett.23.17
37.
37.G.H. Rao, J. R. Sun, J.K. Liang, and W.Y. Zhou, Phys. Rev. B 55, 3742 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.3742
38.
38.K.H. Kim, M. Uehara, C. Hess, P.A. Sharma, and S.-W. Cheong, Phys. Rev. Lett. 84, 2961 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2961
39.
39.H. Zhang, D. Zeng, and Z. Liu, J. Magn. Magn. Mater. 322, 2375 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.02.040
40.
40.D. Ginting, D. Nanto, Y. D. Zhang, S. C. Yu, and T-L. Phan, J. Appl. Phys. 113, 17E110 (2013).
http://dx.doi.org/10.1063/1.4793506
41.
41.J. Fan, L. Ling, B. Hong, L. Zhang, L. Pi, and Y. Zhang, Phys. Rev. B 81, 144426 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.144426
42.
42.A. Arrott and J. E. Noakes, Phy. Rev. Lett. 19, 786 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.786
43.
43.J. S. Kouvel and M.E. Fisher, Phys. Rev. 136, A1626 (1964).
http://dx.doi.org/10.1103/PhysRev.136.A1626
44.
44.M. Oumezzine, O. Pena, S. Kallel, and S. Zemni, Solid State Sciences 13, 1829 (2011).
http://dx.doi.org/10.1016/j.solidstatesciences.2011.07.019
45.
45.S. K. Banerjee, Phys. Lett. 12, 16 (1964).
http://dx.doi.org/10.1016/0031-9163(64)91158-8
46.
46.J. Yang, W. H Song, Y. Q. Ma, R. L. Zhang, B. C. Zhao, Z. G. Sheng, G. H. Zheng, J. M. Dai, and Y. P. Sun, Phys. Rev. B 70, 144421 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.144421
47.
47.K. Cherif, J. Dhahri, E. Dhahri, M. Oumezzine, and H. Vincent, J. Solid State Chem. 163, 466 (2002).
http://dx.doi.org/10.1006/jssc.2001.9429
48.
48.M.H. Ehsani, P. Kameli, F.S. Razavi, M.E. Ghazi, and B. Aslibeiki, J. Alloys. Compds 579, 406 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.06.067
49.
49.K. Ghosh, C. J. Lobb, R. L. Greene, S. G. Karabashev, D. A. Shulyatev, A. A. Arsenov, and Y. Mukovskii, Phys.Rev.Lett. 81, 4740 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4740
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928284
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928284
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928284
2015-08-04
2016-12-06

Abstract

In the present work we report the structural, electron spin resonance (ESR) and magnetic properties of LaDCaMnO (D = Bi, Sm) manganites synthesized by sol-gel method. The critical behavior at the critical point, where the system undergoes phase transition from paramagnetic (PM) to ferromagnetic (FM) state, is investigated by using modified-Arrott plots, Kouvel-Fisher method and critical isotherm analysis. Both the samples show second-order phase transition near the critical point. The decrease in magnetization (), Curie temperature (), evolution of spin or cluster glass behavior and the nature of second-order phase transition compared to the first-order transition reported in the literature for LaCaMnO are ascribed to disorder caused by the size mismatch of the A-site cations with Bi and Sm doping at La-site.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928284.html;jsessionid=TWtr2LWqV1p_FFEp-65m0PGR.x-aip-live-06?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928284&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928284&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928284'
Right1,Right2,Right3,