Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Edelstein and S. Ovshinsky, Solid State Commun. 41, 139 (1982).
2.M. Ikebe, Y. Muto, S. Ikeda, H. Fujimori, and K. Suzuki, Phys. B+ C 107, 387 (1981).
3.M. Collver and R. Hammond, Phys. Rev. Lett. 30, 92 (1973).
4.H.T. Huy, H. Shishido, M. Hayashi, T. Yotsuya, M. Kato, and T. Ishida, Phys. C Supercond. 484, 86 (2013).
5.M. Liang and M.N. Kunchur, Phys. Rev. B 82, 144517 (2010).
6.F. Colauto, M. Motta, and A. Palau, arXiv:1408.4650v1 (2014).
7.C.M. Natarajan, M.G. Tanner, and R.H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012).
8.G.N. Gol’tsman, O. Okunev, G. Chulkova, a. Lipatov, a. Semenov, K. Smirnov, B. Voronov, a. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705 (2001).
9.R.H. Hadfield, Nat. Photonics 3, 696 (2009).
10.H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, Nat. Photonics 1, 343 (2007).
11.M.E. Grein, A.J. Kerman, E. a. Dauler, O. Shatrovoy, R.J. Molnar, D. Rosenberg, J. Yoon, C.E. Devoe, D. V. Murphy, B.S. Robinson, and D.M. Boroson, in Int. Conf. Sp. Opt. Syst. Appl. ICSOS’11 (2011) p. 78.
12.D. Bonneau, M. Lobino, P. Jiang, C.M. Natarajan, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, M.G. Thompson, and J.L. O’Brien, Phys. Rev. Lett. 108, 1 (2012).
13.A. McCarthy, N.J. Krichel, N.R. Gemmell, X. Ren, M.G. Tanner, S.N. Dorenbos, V. Zwiller, R.H. Hadfield, and G.S. Buller, Opt. Express 21, 8904 (2013).
14.N.R. Gemmell, A. McCarthy, B. Liu, M.G. Tanner, S.D. Dorenbos, V. Zwiller, M.S. Patterson, G.S. Buller, B.C. Wilson, and R.H. Hadfield, Opt. Express 21, 5005 (2013).
15.B. Baek, A.E. Lita, V. Verma, and S.W. Nam, Appl. Phys. Lett. 98, 251105 (2011).
16.V.B. Verma, a. E. Lita, M.R. Vissers, F. Marsili, D.P. Pappas, R.P. Mirin, and S.W. Nam, Appl. Phys. Lett. 105, 022602 (2014).
17.B. Baek, A.E. Lita, V. Verma, and S.W. Nam, Appl. Phys. Lett. 98, 251105 (2011).
18.F. Marsili, F. Bellei, F. Najafi, A. Dane, E. a Dauler, R.J. Molnar, and K. Berggren, Nano Lett. 12, 4799 (2012).
19.a. Engel, a. Aeschbacher, K. Inderbitzin, a. Schilling, K. Il’In, M. Hofherr, M. Siegel, a. Semenov, and H.W. Hübers, Appl. Phys. Lett. 100, 10 (2012).
20.S.N. Dorenbos, P. Forn-Díaz, T. Fuse, a. H. Verbruggen, T. Zijlstra, T.M. Klapwijk, and V. Zwiller, Appl. Phys. Lett. 98, 251102 (2011).
21.F. Marsili, V. Verma, J. Stern, and S. Harrington, Nat. Photonics 7, 210 (2013).
22.Y.P. Korneeva, M.Y. Mikhailov, Y.P. Pershin, N.N. Manova, a V Divochiy, Y.B. Vakhtomin, a a Korneev, K. V Smirnov, a G. Sivakov, a Y. Devizenko, and G.N. Goltsman, Supercond. Sci. Technol. 27, 095012 (2014).
23.V.B. Verma, B. Korzh, F. Bussières, R.D. Horansky, S.D. Dyer, A.E. Lita, I. Vayshenker, F. Marsili, M.D. Shaw, H. Zbinden, R.P. Mirin, and S.W. Nam, arXiv,(2015).
24.G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J.J. Finley, Sci. Rep. 3, 1901 (2013).
25.R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H.T. Bookey, R.R. Thomson, N.D. Psaila, and A.K. Kar, Appl. Phys. Lett. 90, 241107 (2007).
26.a. Gaggero, S.J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G.J. Hamhuis, R. Nötzel, R. Sanjines, and a. Fiore, Appl. Phys. Lett. 97, 97 (2010).
27.M.G. Tanner, L.S.E. Alvarez, W. Jiang, R.J. Warburton, Z.H. Barber, and R.H. Hadfield, Nanotechnology 23, 505201 (2012).
28.W.L. Johnson, J. Appl. Phys. 50, 1557 (1979).
29.S. Kubo, J. Appl. Phys. 63, 2033 (1988).
30.S. Kondo, J. Mater. Res. 7, 853 (1992).
31.W.L. Johnson, C.C. Tsuei, S.I. Raider, and R.B. Laibowitz, J. Appl. Phys. 50, 4240 (1979).
32.R. Koepke and G. Bergmann, Solid State Commun. 19, 435 (1976).
33.M. Strongin, R. Thompson, O. Kammerer, and J. Crow, Phys. Rev. B 1, 1078 (1970).
34.Y. Liu, D.B. Haviland, B. Nease, and a. M. Goldman, Phys. Rev. B 47, 5931 (1993).
35.H.M. Jaeger, D.B. Haviland, B.G. Orr, and a. M. Goldman, Phys. Rev. B 40, 182 (1989).
36.Y. Ivry, C.-S. Kim, a. E. Dane, D. De Fazio, a. N. McCaughan, K. a. Sunter, Q. Zhao, and K.K. Berggren, Phys. Rev. B 90, 214515 (2014).
37.M. Beasley, J. Mooij, and T. Orlando, Phys. Rev. Lett. 42, 1165 (1979).

Data & Media loading...


Article metrics loading...



Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WSi, though other amorphous superconductors such as molybdenum silicide (Mo Si) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo Si. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd