Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928285
1.
1.A. Edelstein and S. Ovshinsky, Solid State Commun. 41, 139 (1982).
http://dx.doi.org/10.1016/0038-1098(82)91052-3
2.
2.M. Ikebe, Y. Muto, S. Ikeda, H. Fujimori, and K. Suzuki, Phys. B+ C 107, 387 (1981).
http://dx.doi.org/10.1016/0378-4363(81)90499-X
3.
3.M. Collver and R. Hammond, Phys. Rev. Lett. 30, 92 (1973).
http://dx.doi.org/10.1103/PhysRevLett.30.92
4.
4.H.T. Huy, H. Shishido, M. Hayashi, T. Yotsuya, M. Kato, and T. Ishida, Phys. C Supercond. 484, 86 (2013).
http://dx.doi.org/10.1016/j.physc.2012.03.037
5.
5.M. Liang and M.N. Kunchur, Phys. Rev. B 82, 144517 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.144517
6.
6.F. Colauto, M. Motta, and A. Palau, arXiv:1408.4650v1 (2014).
7.
7.C.M. Natarajan, M.G. Tanner, and R.H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012).
http://dx.doi.org/10.1088/0953-2048/25/6/063001
8.
8.G.N. Gol’tsman, O. Okunev, G. Chulkova, a. Lipatov, a. Semenov, K. Smirnov, B. Voronov, a. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705 (2001).
http://dx.doi.org/10.1063/1.1388868
9.
9.R.H. Hadfield, Nat. Photonics 3, 696 (2009).
http://dx.doi.org/10.1038/nphoton.2009.230
10.
10.H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, Nat. Photonics 1, 343 (2007).
http://dx.doi.org/10.1038/nphoton.2007.75
11.
11.M.E. Grein, A.J. Kerman, E. a. Dauler, O. Shatrovoy, R.J. Molnar, D. Rosenberg, J. Yoon, C.E. Devoe, D. V. Murphy, B.S. Robinson, and D.M. Boroson, in Int. Conf. Sp. Opt. Syst. Appl. ICSOS’11 (2011) p. 78.
12.
12.D. Bonneau, M. Lobino, P. Jiang, C.M. Natarajan, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, M.G. Thompson, and J.L. O’Brien, Phys. Rev. Lett. 108, 1 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.053601
13.
13.A. McCarthy, N.J. Krichel, N.R. Gemmell, X. Ren, M.G. Tanner, S.N. Dorenbos, V. Zwiller, R.H. Hadfield, and G.S. Buller, Opt. Express 21, 8904 (2013).
http://dx.doi.org/10.1364/OE.21.008904
14.
14.N.R. Gemmell, A. McCarthy, B. Liu, M.G. Tanner, S.D. Dorenbos, V. Zwiller, M.S. Patterson, G.S. Buller, B.C. Wilson, and R.H. Hadfield, Opt. Express 21, 5005 (2013).
http://dx.doi.org/10.1364/OE.21.005005
15.
15.B. Baek, A.E. Lita, V. Verma, and S.W. Nam, Appl. Phys. Lett. 98, 251105 (2011).
http://dx.doi.org/10.1063/1.3600793
16.
16.V.B. Verma, a. E. Lita, M.R. Vissers, F. Marsili, D.P. Pappas, R.P. Mirin, and S.W. Nam, Appl. Phys. Lett. 105, 022602 (2014).
http://dx.doi.org/10.1063/1.4890277
17.
17.B. Baek, A.E. Lita, V. Verma, and S.W. Nam, Appl. Phys. Lett. 98, 251105 (2011).
http://dx.doi.org/10.1063/1.3600793
18.
18.F. Marsili, F. Bellei, F. Najafi, A. Dane, E. a Dauler, R.J. Molnar, and K. Berggren, Nano Lett. 12, 4799 (2012).
http://dx.doi.org/10.1021/nl302245n
19.
19.a. Engel, a. Aeschbacher, K. Inderbitzin, a. Schilling, K. Il’In, M. Hofherr, M. Siegel, a. Semenov, and H.W. Hübers, Appl. Phys. Lett. 100, 10 (2012).
http://dx.doi.org/10.1063/1.3684243
20.
20.S.N. Dorenbos, P. Forn-Díaz, T. Fuse, a. H. Verbruggen, T. Zijlstra, T.M. Klapwijk, and V. Zwiller, Appl. Phys. Lett. 98, 251102 (2011).
http://dx.doi.org/10.1063/1.3599712
21.
21.F. Marsili, V. Verma, J. Stern, and S. Harrington, Nat. Photonics 7, 210 (2013).
http://dx.doi.org/10.1038/nphoton.2013.13
22.
22.Y.P. Korneeva, M.Y. Mikhailov, Y.P. Pershin, N.N. Manova, a V Divochiy, Y.B. Vakhtomin, a a Korneev, K. V Smirnov, a G. Sivakov, a Y. Devizenko, and G.N. Goltsman, Supercond. Sci. Technol. 27, 095012 (2014).
http://dx.doi.org/10.1088/0953-2048/27/9/095012
23.
23.V.B. Verma, B. Korzh, F. Bussières, R.D. Horansky, S.D. Dyer, A.E. Lita, I. Vayshenker, F. Marsili, M.D. Shaw, H. Zbinden, R.P. Mirin, and S.W. Nam, arXiv,(2015).
24.
24.G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J.J. Finley, Sci. Rep. 3, 1901 (2013).
http://dx.doi.org/10.1038/srep01901
25.
25.R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H.T. Bookey, R.R. Thomson, N.D. Psaila, and A.K. Kar, Appl. Phys. Lett. 90, 241107 (2007).
http://dx.doi.org/10.1063/1.2748328
26.
26.a. Gaggero, S.J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G.J. Hamhuis, R. Nötzel, R. Sanjines, and a. Fiore, Appl. Phys. Lett. 97, 97 (2010).
http://dx.doi.org/10.1063/1.3496457
27.
27.M.G. Tanner, L.S.E. Alvarez, W. Jiang, R.J. Warburton, Z.H. Barber, and R.H. Hadfield, Nanotechnology 23, 505201 (2012).
http://dx.doi.org/10.1088/0957-4484/23/50/505201
28.
28.W.L. Johnson, J. Appl. Phys. 50, 1557 (1979).
http://dx.doi.org/10.1063/1.327256
29.
29.S. Kubo, J. Appl. Phys. 63, 2033 (1988).
http://dx.doi.org/10.1063/1.341105
30.
30.S. Kondo, J. Mater. Res. 7, 853 (1992).
http://dx.doi.org/10.1557/JMR.1992.0853
31.
31.W.L. Johnson, C.C. Tsuei, S.I. Raider, and R.B. Laibowitz, J. Appl. Phys. 50, 4240 (1979).
http://dx.doi.org/10.1063/1.326456
32.
32.R. Koepke and G. Bergmann, Solid State Commun. 19, 435 (1976).
http://dx.doi.org/10.1016/0038-1098(76)91184-4
33.
33.M. Strongin, R. Thompson, O. Kammerer, and J. Crow, Phys. Rev. B 1, 1078 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.1078
34.
34.Y. Liu, D.B. Haviland, B. Nease, and a. M. Goldman, Phys. Rev. B 47, 5931 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.5931
35.
35.H.M. Jaeger, D.B. Haviland, B.G. Orr, and a. M. Goldman, Phys. Rev. B 40, 182 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.182
36.
36.Y. Ivry, C.-S. Kim, a. E. Dane, D. De Fazio, a. N. McCaughan, K. a. Sunter, Q. Zhao, and K.K. Berggren, Phys. Rev. B 90, 214515 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.214515
37.
37.M. Beasley, J. Mooij, and T. Orlando, Phys. Rev. Lett. 42, 1165 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.1165
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928285
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928285
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928285
2015-08-04
2016-09-29

Abstract

Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WSi, though other amorphous superconductors such as molybdenum silicide (Mo Si) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo Si. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928285.html;jsessionid=_xz6z-QFFr_OtbCDFfzbMP7-.x-aip-live-03?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928285&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928285&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928285'
Right1,Right2,Right3,