Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928323
1.
1.J. M. Larson and J. P. Snyder, IEEE Trans. Electron Devices 53, 1048 (2006).
http://dx.doi.org/10.1109/TED.2006.871842
2.
2.J. B. Bindell, W. M. Moller, and E. F. Labuda, IEEE Trans. Electron Devices 27, 420 (1980).
http://dx.doi.org/10.1109/T-ED.1980.19878
3.
3.M. H. Unewisse and J. W. V. Storey, J. Appl. Phys. 73, 3873 (1993).
http://dx.doi.org/10.1063/1.352899
4.
4.M. Zhang, J. Knoch, Q. T. Zhao, U. Breuer, and S. Mantl, Solid-State Electronics 50, 594 (2006).
http://dx.doi.org/10.1016/j.sse.2006.03.016
5.
5.D. Connelly, C. Faulkner, D. E. Grupp, and J. S. Harris, IEEE Trans. Nanotechnol 3, 98 (2004).
http://dx.doi.org/10.1109/TNANO.2003.820774
6.
6.M. H. Liao, P.-S. Kuo, S. R. Jan, S. T. Chang, and C. W. Liu, Appl. Phys. Lett. 88, 143509 (2006).
http://dx.doi.org/10.1063/1.2191831
7.
7.J. R. Heath and M. A. Ratner, Phys. Today 56, 43 (2003).
http://dx.doi.org/10.1063/1.1583533
8.
8.T. Tamura, S. Ishibashi, K. Terakura, and H. Weng, Phys. Rev. B 80, 195302 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195302
9.
9.S. Guha and V. Narayanan, Annu. Rev. Mater. Res. 39, 181 (2009).
http://dx.doi.org/10.1146/annurev-matsci-082908-145320
10.
10.J. A. Rothschild, A. Cohen, A. Brusilovsky, L. Kornblum, Y. Kauffmann, Y. Amouyal, and M. Eizenberg, J. Appl. Phys. 112, 013717 (2012).
http://dx.doi.org/10.1063/1.4730618
11.
11.M. K. Niranjan and U. V. Waghmare, J. Appl. Phys. 112, 093702 (2012).
http://dx.doi.org/10.1063/1.4761994
12.
12.S. Toyoda, H. Kumigashira, M. Oshima, H. Sugaya, and H. Morita, Appl. Phys. Lett. 100, 112906 (2012).
http://dx.doi.org/10.1063/1.3695166
13.
13.R. T. Tung, J. M. Gibson, and J. M. Poate, Phys. Rev. Lett. 50, 429 (1983);
http://dx.doi.org/10.1103/PhysRevLett.50.429
13.R. T. Tung, J. M. Gibson, and J. M. Poate, Appl. Phys. Lett. 42, 888 (1983).
http://dx.doi.org/10.1063/1.93776
14.
14.C. Ohler, C. Daniels, A. Förster, and H. Lüth, Phy. Rev. B 58, 7864 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7864
15.
15.A. Yagishita, T.-J. King, and J. Bokor, Jap. J. App. Phy. 43, 1713 (2004).
http://dx.doi.org/10.1143/JJAP.43.1713
16.
16.N. V. Rees and C. C. Matthai, Semicond. Sci. Technol. 4, 412 (1989).
http://dx.doi.org/10.1088/0268-1242/4/5/014
17.
17.N. V. Rees and C. C. Matthai, J. Phys. C: Solid State Phys. 21, L981 (1988).
http://dx.doi.org/10.1088/0022-3719/21/27/002
18.
18.J. Bardi, N. Binggeli, and A. Baldereschi, Phy. Rev. B 59, 8054 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8054
19.
19.C. Berthod, N. Binggeli, and A. Baldereschi, Phy. Rev. B 68, 085323 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085323
20.
20.C. Berthod, N. Binggeli, and A. Baldereschi, Europhys. Lett. 36, 67 (1996).
http://dx.doi.org/10.1209/epl/i1996-00188-3
21.
21.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
22.
22.G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, RC558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
23.
23.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
24.
24.G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54, 11169 (1995).
http://dx.doi.org/10.1103/PhysRevB.54.11169
25.
25.J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C: Solid State Phys. 12, 4409 (1979).
http://dx.doi.org/10.1088/0022-3719/12/21/009
26.
26.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
27.
27.H. J. Monkhorst and J. D. Pack, Phys. Rev. B. 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
28.
28.N. Binggeli and A. Baldereschi, J. Phys. D 31, 1273 (1998).
http://dx.doi.org/10.1088/0022-3727/31/11/002
29.
29.J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.465
30.
30.E. Dubois and G. Larrieu, J. Appl. Phys. 96, 729 (2004).
http://dx.doi.org/10.1063/1.1756215
31.
31.J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
32.
32.F. Tran and P. Blaha, Phys. Rev.Lett. 102, 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
33.
33.J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened coulomb potential,” J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
34.
34.H. Carchano and C. Jund, Solid-state Elec. 13, 83 (1970).
http://dx.doi.org/10.1016/0038-1101(70)90012-2
35.
35.S. Mantovani, F. Nava, C. Nobili, and G. Ottaviani, Phy. Rev. B 33, 5536 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.5536
36.
36.P. Hazdra and J. Vobecký, Mat. Science and Eng. B 124, 275 (2005).
http://dx.doi.org/10.1016/j.mseb.2005.08.085
37.
37.W. Schottky, Z. Phys. 113, 367 (1939).
http://dx.doi.org/10.1007/BF01340116
38.
38.J. Bardeen, Phys. Rev. 71, 717 (1947).
http://dx.doi.org/10.1103/PhysRev.71.717
39.
39.V. Heine, Phys. Rev. 138, A1689 (1965).
http://dx.doi.org/10.1103/PhysRev.138.A1689
40.
40.C. Tejedor, F. Flores, and E. Louis, J. Phys. C 10, 2163 (1977).
http://dx.doi.org/10.1088/0022-3719/10/12/022
41.
41.W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, J.Vac. Sci. Technol. 16, 1422 (1979).
http://dx.doi.org/10.1116/1.570215
42.
42.H. Hasegawa and H. Ohno, J.Vac. Sci. Technol. B 4, 1130 (1986).
http://dx.doi.org/10.1116/1.583556
43.
43.M. K. Niranjan, S. Zollner, L. Kleinman, and A. Demkov, Phy. Rev. B 73, 195332 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195332
44.
44.M. Mongillo, P. Spathis, G. Katsaros, and S. De Franceschi, Phy. Rev. X 3, 041025 (2013).
45.
45.R. T. Tung, Appl. Phys. Rev. 1, 011304 (2014).
http://dx.doi.org/10.1063/1.4858400
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928323
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928323
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928323
2015-08-05
2016-12-09

Abstract

We show, using density functional theory (DFT) calculations, that the Schottky barrier height (SBH) at the PtSi/Si interface can be lowered by uniaxial strain applied not only on Si but also on PtSi. The strain was applied to the (001) direction of Si and PtSi, which is normal for the interface. The SBH of the hole is lowered by 0.08 eV under 2% of tensile strain on Si and by 0.09 eV under 4 % of compressive strain on PtSi. Because the SBH at PtSi/Si contact is approximately 0.2 eV, this amount of reduction can significantly lower the resistance of the PtSi/Si contact; thus applying uniaxial strain on both PtSi and Si possibly enhances the performance of Schottky barrier field effect transistors. Theoretical models of SB formation and conventional structure model are evaluated. It is found that Pt penetration into Si stabilizes the interface and lowers the SBH by approximately 0.1 eV from the bulk-terminated interface model, which implies that conventionally used bulk-terminated interface models have significant errors. Among the theoretical models of SB formation, the model of strong Fermi level pining adequately explains the electron transfer phenomena and SBH, but it has limited ability to explain SBH changes induced by changes of interface structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928323.html;jsessionid=0sNxTE9naTMKdNolLhtIfvW3.x-aip-live-03?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928323&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928323&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928323'
Right1,Right2,Right3,