Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928423
1.
1.E. Eichten et al., Phys. Rev. Lett. 34, 369 (1975).
http://dx.doi.org/10.1103/PhysRevLett.34.369
2.
2.J. F. Gunion and R.S. Willey, Phys. Rev. D 12, 174 (1975).
http://dx.doi.org/10.1103/PhysRevD.12.174
3.
3.R. S. Kaushal, Phys. Lett. 57B, 354 (1975).
http://dx.doi.org/10.1016/0370-2693(75)90469-4
4.
4.J. S. Kang and H. J. Schnitzer, Phys. Rev. D 12, 841 (1975).
http://dx.doi.org/10.1103/PhysRevD.12.841
5.
5.J. F. Gunion and L. F. Li, Phys. Rev. D 12, 3583 (1975).
http://dx.doi.org/10.1103/PhysRevD.12.3583
6.
6.H. Tezuka, J. Phys. A 24, 5267 (1991).
http://dx.doi.org/10.1088/0305-4470/24/22/010
7.
7.S. Abe and T. Fujita, Nucl. Phys. A 475, 657 (1987).
http://dx.doi.org/10.1016/0375-9474(87)90231-4
8.
8.D. Hofer and W. Stocker, Phys. Lett. A 138, 463 (1989).
http://dx.doi.org/10.1016/0375-9601(89)90745-7
9.
9.H. Tezuka, AIP Advances 3, 082135 (2013).
http://dx.doi.org/10.1063/1.4820388
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928423
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928423
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928423
2015-08-06
2016-12-09

Abstract

It is shown that the Dirac equation has bound-state solutions for a repulsive scalar linear potential. Analytical solutions exist when there exist certain quantitative relations between the strength constant of the linear potential and the mass of the particle, as shown in a previous case that examines the attractive scalar linear potential. The energies of the bound states and relations between and are the same as those of attractive potential except for the sign of .

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928423.html;jsessionid=2HgKFnjm2-pnbffDQ0Y1ExnY.x-aip-live-06?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928423&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928423&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928423'
Right1,Right2,Right3,