Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928447
1.
1.J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques (Morgan Kaufmann, San Mateo, 1993).
2.
2.R. F. Freitas and W. W. Wilcke, IBM J. Res. Dev. 52(4/5), 439 (2008).
http://dx.doi.org/10.1147/rd.524.0439
3.
3.G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy, IBM J. Res. Dev 52(4/5), 449 (2008).
http://dx.doi.org/10.1147/rd.524.0449
4.
4.S. Hudgens and B. Johnson, MRS Bull. 29, 829 (2004).
http://dx.doi.org/10.1557/mrs2004.236
5.
5.S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam, IBM J. Res. Dev. 52(4/5), 465 (2008).
http://dx.doi.org/10.1147/rd.524.0465
6.
6.A. L. Lacaita and A. Redaelli, Microelectron. Eng. 109, 351 (2013).
http://dx.doi.org/10.1016/j.mee.2013.02.105
7.
7.I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim, G. H. Oh, and C. H. Chung, VLSI Symp. Tech. Dig. 203 (2010).
8.
8.M. J. Kang, T. J. Park, Y. W. Kwon, D. H. Ahn, Y. S. Kang, H. Jeong, S. J. Ahn, Y. J. Song, B. C. Kim, S.W. Nam, H. K. Kang, G. T. Jeong, and C. H. Chung, IEDM Tech. Dig. 39 (2011).
9.
9.F. Xiong, M.-H. Bae, Y. Dai, A.D. Liao, A. Behnam, E.A. Carrion, S. Hong, D. Ielmini, and E. Pop, Nano Lett. 13, 464 (2013).
http://dx.doi.org/10.1021/nl3038097
10.
10.J. Liang, R. G. D. Jeyasingh, H. Y. Chen, and H. P. Wong, IEEE Trans. Electron Devices. 59, 1155 (2012).
http://dx.doi.org/10.1109/TED.2012.2184542
11.
11.N. Yamada, E Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys. 69, 2849 (1991).
http://dx.doi.org/10.1063/1.348620
12.
12.G. F. Zhou, Mater. Sci. Eng. A 304-306, 73 (2001).
http://dx.doi.org/10.1016/S0921-5093(00)01448-9
13.
13.N. Yamada, E. Ohno, N. Akahira, K. I. Nishiuchi, K. I. Nagata, and M. Takao, Jpn. J. Appl. Phys. 26(S4), 61 (1987).
http://dx.doi.org/10.7567/JJAPS.26S4.61
14.
14.J. Lee, S. Cho, D. Ahn, M. Kang, S. Nam, H. K. Kang, and C. Chung, IEEE Electron Device Lett. 32, 1113 (2011).
http://dx.doi.org/10.1109/LED.2011.2157075
15.
15.N. Ohmachi, N. Morishita, K. Yusu, N. Nakamura, T. Nakai, and S. Ashida, Jpn. J. Appl. Phys. 45, 1210 (2006).
http://dx.doi.org/10.1143/JJAP.45.1210
16.
16.B. Liu, Z. Song, Z Zhang, T. Xia, J. Feng, and S. Chen, Thin Solid Films 478, 49 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.09.057
17.
17.B. Qiao, J. Feng, Y. Lai, Y. Ling, Y. Lin, T. A. Tang, and B. Chen, Appl. Surf. Sci. 252, 8404 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.11.047
18.
18.J. Feng, Y. Zhang, B. W. Qiao, Y. F. Lai, Y. Y. Lin, B. C. Cai, T. A. Tang, and B. Chen, Appl. Phys. A 87, 57 (2007).
http://dx.doi.org/10.1007/s00339-006-3851-2
19.
19.R. Kojima, S. Okabayashi, T. Kashihara, K. Horai, T. Matsunaga, E. Ohno, and T. Ohta, Jpn. J. Appl. Phys. 37(4S), 2098 (1998).
http://dx.doi.org/10.1143/JJAP.37.2098
20.
20.R. Kojima, T. Kouzaki, T. Matsunaga, and N. Yamada, “Optical Data Storage 98,” International Society for Optics and Photonics 1423 (1998).
21.
21.O. Amir and R. Kalish, J. Appl. Phys. 70, 4958 (1991).
http://dx.doi.org/10.1063/1.349043
22.
22.M. Kokkoris, P. Misaelides, S. Kossionides, Ch. Zarkadas, A. Lagoyannis, R. Vlastou, C.T. Papadopoulos, and A. Kontos, Nucl. Instrum. Methods Phys. Res., Sect. B 249, 77 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.03.083
23.
23.R. Shayduk, F. Katmis, W. Braun, and H. Riechert, J. Vac. Sci. Technol. B 28, C3E1 (2010).
http://dx.doi.org/10.1116/1.3305482
24.
24.J. Yu, B. Liu, T. Zhang, Z. Song, S. Feng, and B. Chen, Appl. Surf. Sci. 253, 6125 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.01.014
25.
25.M.-C. Jung, Y. M. Lee, H.-D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, Appl. Phys. Lett. 91, 083514 (2007).
http://dx.doi.org/10.1063/1.2773959
26.
26.K. Kim, J.-C. Park, J.-G. Chung, S. A. Song, M.-C. Jung, Y. M. Lee, H.-J. Shin, B. Kuh, Y. Ha, and J.-S. Noh, Appl. Phys. Lett. 89, 243520 (2006).
http://dx.doi.org/10.1063/1.2408660
27.
27.G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, Appl. Phys. Lett. 95, 043108 (2009).
http://dx.doi.org/10.1063/1.3191670
28.
28.K. Darmawikarta, S. Raoux, S. G. Bishop, and J. R. Abelson, Appl. Phys. Lett. 105, 191903 (2014).
http://dx.doi.org/10.1063/1.4901534
29.
29.C. Peng, P. Yang, L. Wu, Z. Song, F. Rao, S. Song, D. Zhou, and J. Chu, J. Appl. Phys. 113, 034310 (2013).
http://dx.doi.org/10.1063/1.4781206
30.
30.J. C. Schottmiller, D. L. Bowman, and C. Wood, J. Appl. Phys. 39, 1663 (1968).
http://dx.doi.org/10.1063/1.1656412
31.
31.N. Tohge, Y. Yamamoto, T. Minami, and M. Tanaka, Appl. Phys. Lett. 34, 640 (1979).
http://dx.doi.org/10.1063/1.90621
32.
32.M. Kastner, D. Adler, and H. Fritzsche, Phys. Rev. Lett. 37, 1504 (1976).
http://dx.doi.org/10.1103/PhysRevLett.37.1504
33.
33.N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, J. Appl. Phys. 51, 1048 (1980).
http://dx.doi.org/10.1063/1.327710
34.
34.P. Nagels, M. Rotti, and S. Vikhrov, J. Phys. Colloq. 42, C4-907 (1981).
http://dx.doi.org/10.1051/jphyscol:19814197
35.
35.P. Nagels, L. Tichy, A. Triska, and H. Ticha, J. Non-Cryst. Solids 59-60, 1015 (1983).
http://dx.doi.org/10.1016/0022-3093(83)90339-3
36.
36.K. L. Bhatia, J. Non-Cryst. Solids 54, 173 (1983).
http://dx.doi.org/10.1016/0022-3093(83)90091-1
37.
37.J. M. Saiter, T. Derrey, and C. Vautier, J. Non-Cryst.Solids 77-78, 1169 (1985).
http://dx.doi.org/10.1016/0022-3093(85)90867-1
38.
38.N. Yamada and T. Mtsunaga, J. Appl. Phys. 88, 7020 (2000).
http://dx.doi.org/10.1063/1.1314323
39.
39.D.H. Im, J. I. Lee, S.L. Cho, H.G. An, D.H. Kim, I.S. Kim, H. Park, D.H. Ahn, H. Horii, S.O. Park, U-In Chung, and J.T. Moon, Electron Devices Meeting, 2008. IEDM 2008. IEEE International, p.1-4 (2008).
40.
40.Y.J. Song, J. H. Park, S. Y. Lee, Jae-Hyun Park, Y. N. Hwang, S. H. Lee, K.C. Ryoo, S.J. Ahn, C.W. Jeong, J.M. Shin, W.C. Jeong, K.H. Koh, G.T. Jeong, H.S. Jeong, and K.N. Kim, in Proc. of 35th European Solid-State Device Research Conference, 2005 (2005) pp. 513516.
http://dx.doi.org/10.1109/ESSDER.2005.1546697
41.
41.Z. Wu, G. Zhang, Y. W. Park, S. D. Kang, H. K. Lyeo, D. S. Jeong, J. H. Jeong, K. S. No, and B. K. Cheong, Appl. Phys. Lett. 99, 143505 (2011).
http://dx.doi.org/10.1063/1.3641470
42.
42.R. Fallica, E. Varesi, L. Fumagalli, S. Spadoni, M. Longo, and C. Wiemer, Phys. Status Solidi 12, 1107 (2013).
43.
43.U. Russo, D. Ielmini, and A. L. Lacaita, IEEE Trans. Electron Devices 54, 2769 (2007).
http://dx.doi.org/10.1109/TED.2007.904976
44.
44.A. L. Lacaita, A. Redaelli, D. Ielmini, F. Pellizzer, A. Pirovano, A. Benvenuti, and R. Bez, IEDM Tech. Dig. 911 (2004).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928447
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928447
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928447
2015-08-06
2016-10-01

Abstract

In this study, we propose a nitrogen-incorporated GeBiTe ternary phase of N (Ge BiTe) as a phase change material for reliable PCM (Phase Change Memory) with high speed operation. We found that the N (Ge BiTe) film shows the resistance value of 40 kΩ after annealing at 440oC for 10 minutes, which is much higher than the value of 3.4 kΩ in the case of conventional N (Ge SbTe) films. A set operation time of 14 nsec was achieved in the devices due to the increased probability of the nucleation by the addition of the elemental Bi. The long data retention time of 10 years at 85oC on the base of 1% failure was obtained as the result of higher activation energy of 2.52 eV for the crystallization compared to the case of N (Ge SbTe) film, in which the activation energy is 2.1 eV. In addition, a reset current reduction of 27% and longer cycles of endurance as much as 2 order of magnitude compared to the case of N (Ge SbTe) were observed at a set operation time of 14 nsec. Our results show that N (Ge BiTe) is highly promising for use as a phase change material in reliable PCMs with high performance and also in forthcoming storage class memory applications, too.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928447.html;jsessionid=F6AKi6UlVjw6H-zVHF_lUDJs.x-aip-live-03?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928447&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928447&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928447'
Right1,Right2,Right3,