Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques (Morgan Kaufmann, San Mateo, 1993).
2.R. F. Freitas and W. W. Wilcke, IBM J. Res. Dev. 52(4/5), 439 (2008).
3.G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy, IBM J. Res. Dev 52(4/5), 449 (2008).
4.S. Hudgens and B. Johnson, MRS Bull. 29, 829 (2004).
5.S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam, IBM J. Res. Dev. 52(4/5), 465 (2008).
6.A. L. Lacaita and A. Redaelli, Microelectron. Eng. 109, 351 (2013).
7.I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim, G. H. Oh, and C. H. Chung, VLSI Symp. Tech. Dig. 203 (2010).
8.M. J. Kang, T. J. Park, Y. W. Kwon, D. H. Ahn, Y. S. Kang, H. Jeong, S. J. Ahn, Y. J. Song, B. C. Kim, S.W. Nam, H. K. Kang, G. T. Jeong, and C. H. Chung, IEDM Tech. Dig. 39 (2011).
9.F. Xiong, M.-H. Bae, Y. Dai, A.D. Liao, A. Behnam, E.A. Carrion, S. Hong, D. Ielmini, and E. Pop, Nano Lett. 13, 464 (2013).
10.J. Liang, R. G. D. Jeyasingh, H. Y. Chen, and H. P. Wong, IEEE Trans. Electron Devices. 59, 1155 (2012).
11.N. Yamada, E Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys. 69, 2849 (1991).
12.G. F. Zhou, Mater. Sci. Eng. A 304-306, 73 (2001).
13.N. Yamada, E. Ohno, N. Akahira, K. I. Nishiuchi, K. I. Nagata, and M. Takao, Jpn. J. Appl. Phys. 26(S4), 61 (1987).
14.J. Lee, S. Cho, D. Ahn, M. Kang, S. Nam, H. K. Kang, and C. Chung, IEEE Electron Device Lett. 32, 1113 (2011).
15.N. Ohmachi, N. Morishita, K. Yusu, N. Nakamura, T. Nakai, and S. Ashida, Jpn. J. Appl. Phys. 45, 1210 (2006).
16.B. Liu, Z. Song, Z Zhang, T. Xia, J. Feng, and S. Chen, Thin Solid Films 478, 49 (2005).
17.B. Qiao, J. Feng, Y. Lai, Y. Ling, Y. Lin, T. A. Tang, and B. Chen, Appl. Surf. Sci. 252, 8404 (2006).
18.J. Feng, Y. Zhang, B. W. Qiao, Y. F. Lai, Y. Y. Lin, B. C. Cai, T. A. Tang, and B. Chen, Appl. Phys. A 87, 57 (2007).
19.R. Kojima, S. Okabayashi, T. Kashihara, K. Horai, T. Matsunaga, E. Ohno, and T. Ohta, Jpn. J. Appl. Phys. 37(4S), 2098 (1998).
20.R. Kojima, T. Kouzaki, T. Matsunaga, and N. Yamada, “Optical Data Storage 98,” International Society for Optics and Photonics 1423 (1998).
21.O. Amir and R. Kalish, J. Appl. Phys. 70, 4958 (1991).
22.M. Kokkoris, P. Misaelides, S. Kossionides, Ch. Zarkadas, A. Lagoyannis, R. Vlastou, C.T. Papadopoulos, and A. Kontos, Nucl. Instrum. Methods Phys. Res., Sect. B 249, 77 (2006).
23.R. Shayduk, F. Katmis, W. Braun, and H. Riechert, J. Vac. Sci. Technol. B 28, C3E1 (2010).
24.J. Yu, B. Liu, T. Zhang, Z. Song, S. Feng, and B. Chen, Appl. Surf. Sci. 253, 6125 (2007).
25.M.-C. Jung, Y. M. Lee, H.-D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, Appl. Phys. Lett. 91, 083514 (2007).
26.K. Kim, J.-C. Park, J.-G. Chung, S. A. Song, M.-C. Jung, Y. M. Lee, H.-J. Shin, B. Kuh, Y. Ha, and J.-S. Noh, Appl. Phys. Lett. 89, 243520 (2006).
27.G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, Appl. Phys. Lett. 95, 043108 (2009).
28.K. Darmawikarta, S. Raoux, S. G. Bishop, and J. R. Abelson, Appl. Phys. Lett. 105, 191903 (2014).
29.C. Peng, P. Yang, L. Wu, Z. Song, F. Rao, S. Song, D. Zhou, and J. Chu, J. Appl. Phys. 113, 034310 (2013).
30.J. C. Schottmiller, D. L. Bowman, and C. Wood, J. Appl. Phys. 39, 1663 (1968).
31.N. Tohge, Y. Yamamoto, T. Minami, and M. Tanaka, Appl. Phys. Lett. 34, 640 (1979).
32.M. Kastner, D. Adler, and H. Fritzsche, Phys. Rev. Lett. 37, 1504 (1976).
33.N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, J. Appl. Phys. 51, 1048 (1980).
34.P. Nagels, M. Rotti, and S. Vikhrov, J. Phys. Colloq. 42, C4-907 (1981).
35.P. Nagels, L. Tichy, A. Triska, and H. Ticha, J. Non-Cryst. Solids 59-60, 1015 (1983).
36.K. L. Bhatia, J. Non-Cryst. Solids 54, 173 (1983).
37.J. M. Saiter, T. Derrey, and C. Vautier, J. Non-Cryst.Solids 77-78, 1169 (1985).
38.N. Yamada and T. Mtsunaga, J. Appl. Phys. 88, 7020 (2000).
39.D.H. Im, J. I. Lee, S.L. Cho, H.G. An, D.H. Kim, I.S. Kim, H. Park, D.H. Ahn, H. Horii, S.O. Park, U-In Chung, and J.T. Moon, Electron Devices Meeting, 2008. IEDM 2008. IEEE International, p.1-4 (2008).
40.Y.J. Song, J. H. Park, S. Y. Lee, Jae-Hyun Park, Y. N. Hwang, S. H. Lee, K.C. Ryoo, S.J. Ahn, C.W. Jeong, J.M. Shin, W.C. Jeong, K.H. Koh, G.T. Jeong, H.S. Jeong, and K.N. Kim, in Proc. of 35th European Solid-State Device Research Conference, 2005 (2005) pp. 513516.
41.Z. Wu, G. Zhang, Y. W. Park, S. D. Kang, H. K. Lyeo, D. S. Jeong, J. H. Jeong, K. S. No, and B. K. Cheong, Appl. Phys. Lett. 99, 143505 (2011).
42.R. Fallica, E. Varesi, L. Fumagalli, S. Spadoni, M. Longo, and C. Wiemer, Phys. Status Solidi 12, 1107 (2013).
43.U. Russo, D. Ielmini, and A. L. Lacaita, IEEE Trans. Electron Devices 54, 2769 (2007).
44.A. L. Lacaita, A. Redaelli, D. Ielmini, F. Pellizzer, A. Pirovano, A. Benvenuti, and R. Bez, IEDM Tech. Dig. 911 (2004).

Data & Media loading...


Article metrics loading...



In this study, we propose a nitrogen-incorporated GeBiTe ternary phase of N (Ge BiTe) as a phase change material for reliable PCM (Phase Change Memory) with high speed operation. We found that the N (Ge BiTe) film shows the resistance value of 40 kΩ after annealing at 440oC for 10 minutes, which is much higher than the value of 3.4 kΩ in the case of conventional N (Ge SbTe) films. A set operation time of 14 nsec was achieved in the devices due to the increased probability of the nucleation by the addition of the elemental Bi. The long data retention time of 10 years at 85oC on the base of 1% failure was obtained as the result of higher activation energy of 2.52 eV for the crystallization compared to the case of N (Ge SbTe) film, in which the activation energy is 2.1 eV. In addition, a reset current reduction of 27% and longer cycles of endurance as much as 2 order of magnitude compared to the case of N (Ge SbTe) were observed at a set operation time of 14 nsec. Our results show that N (Ge BiTe) is highly promising for use as a phase change material in reliable PCMs with high performance and also in forthcoming storage class memory applications, too.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd