Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928448
1.
1.H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).
http://dx.doi.org/10.1016/0079-6425(89)90001-7
2.
2.M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).
http://dx.doi.org/10.1016/j.pmatsci.2005.08.003
3.
3.R. O. Ritchie, Nature Mater. 10, 817 (2011).
http://dx.doi.org/10.1038/nmat3115
4.
4.L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).
http://dx.doi.org/10.1126/science.1092905
5.
5.L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607 (2009).
http://dx.doi.org/10.1126/science.1167641
6.
6.K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).
http://dx.doi.org/10.1126/science.1159610
7.
7.X. Y. Li, Y. J. Wei, L. Lu, K. Lu, and H. J. Gao, Nature 464, 877 (2010).
http://dx.doi.org/10.1038/nature08929
8.
8.Y. H. Zhao, X. Z. Liao, S. Cheng, E. Ma, and Y. T. Zhu, Adv. Mater. 18, 2280 (2006).
http://dx.doi.org/10.1002/adma.200600310
9.
9.P. V. Liddicoat, X. Z. Liao, Y. H. Zhao, Y. T. Zhu, M. Y. Murashkin, E. J. Lavernia, R. Z. Valiev, and S. P. Ringer, Nature Commun. 1, 63 (2010).
http://dx.doi.org/10.1038/ncomms1062
10.
10.Y. M. Wang, M. W. Chen, F. H. Zhou, and E. Ma, Nature 419, 912 (2002).
http://dx.doi.org/10.1038/nature01133
11.
11.K. Lu and J. Lu, J. Mater. Sci. Technol. 15, 193 (1999).
http://dx.doi.org/10.1179/026708399101505707
12.
12.A. Y. Chen, D. F. Li, J. B. Zhang, H. W. Song, and J. Lu, Scripta Mater. 59, 579 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2008.04.048
13.
13.T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, Science 331, 1587 (2011).
http://dx.doi.org/10.1126/science.1200177
14.
14.X. L. Wu, P. Jiang, L. Chen, F. P. Yuan, and Y. T. Zhu, P. Natl Acad Sci USA 111, 7197 (2014).
http://dx.doi.org/10.1073/pnas.1324069111
15.
15.Y. J. Wei, Y. Q. Li, L. C. Zhu, Y. Liu, X. Q. Lei, G. Wang, Y. X. Wu, Z. L. Mi, J. B. Liu, H. T. Wang, and H. J. Gao, Nature Commun. 5, 3580 (2014).
16.
16.K. Lu, Science 345, 1455 (2014).
http://dx.doi.org/10.1126/science.1255940
17.
17.Y. Xiang, T. Li, Z. Suo, and J. Vlassak, Appl. Phys. Lett. 87, 161910 (2005).
http://dx.doi.org/10.1063/1.2108110
18.
18.T. Li and Z. Suo, Inter. J Solids Struc. 43, 2351 (2006).
http://dx.doi.org/10.1016/j.ijsolstr.2005.04.034
19.
19.Y. M. Wang, E. Ma, and M. W. Chen, Appl. Phys. Lett. 80, 2395 (2002).
http://dx.doi.org/10.1063/1.1465528
20.
20.L. Lu, M. L. Sui, and K. Lu, Science 287, 1463 (2000).
http://dx.doi.org/10.1126/science.287.5457.1463
21.
21.X. L. Wu, Y. T. Zhu, Y. G. Wei, and Q. M. Wei, Phys. Rev. Lett. 103, 205504 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.205504
22.
22.X. Feaugas, Acta Mater. 47, 3617 (1999).
http://dx.doi.org/10.1016/S1359-6454(99)00222-0
23.
23.R. J. Asaro, Adv. Appl. Mech. 23, 1 (1983).
http://dx.doi.org/10.1016/S0065-2156(08)70242-4
24.
24.H. Gao, Y. Huang, W. D. Nix, and J. W. Hutchinson, J. Mech. Phys. Solids 47, 1239 (1999).
http://dx.doi.org/10.1016/S0022-5096(98)00103-3
25.
25.X. L. Wu, P. Jiang, L. Chen, J. F. Zhang, F. P. Yuan, and Y. T. Zhu, Mater. Res. Lett. 2, 185 (2014).
http://dx.doi.org/10.1080/21663831.2014.935821
26.
26.Q. Wei, J. Mater. Sci. 42, 1709 (2007).
http://dx.doi.org/10.1007/s10853-006-0700-9
27.
27.G. M. Cheng, W. W. Jian, W. Z. Xu, H. Yuan, P. C. Millett, and Y. T. Zhu, Maters. Res. Lett. 1, 26 (2013).
http://dx.doi.org/10.1080/21663831.2012.739580
28.
28.G. M. Cheng, W. Z. Xu, W. W. Jian, H. Yuan, M. H. Tsai, Y. T. Zhu, Y. F. Zhang, and P. C. Millett, J. Mater. Res. 28, 1820 (2013).
http://dx.doi.org/10.1557/jmr.2012.403
29.
29.V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Nature Mater. 1, 45 (2002).
http://dx.doi.org/10.1038/nmat700
30.
30.J. Schiotz and K. W. Jacobsen, Science 301, 1357 (2003).
http://dx.doi.org/10.1126/science.1086636
31.
31.H. Van Swygenhoven, P. M. Derlet, and A. G. Froseth, Nature Mater. 3, 399 (2004).
http://dx.doi.org/10.1038/nmat1136
32.
32.J. Wang and H. C. Huang, Appl. Phys. Lett. 85, 5983 (2004).
http://dx.doi.org/10.1063/1.1835549
33.
33.D. Farkas and B. Hyde, Nano Lett. 5, 2403 (2005).
http://dx.doi.org/10.1021/nl0515807
34.
34.A. C. Lund and C. A. Schuh, Acta Mater. 53, 3193 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.03.023
35.
35.D. Wolf, V. Yamakov, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Acta Mater. 53, 1 (2005).
http://dx.doi.org/10.1016/j.actamat.2004.08.045
36.
36.Z. L. Pan, Y. L. Li, and Q. Wei, Acta Mater. 56, 3470 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.03.025
37.
37.M. F. Horstemeyer, D. Farkas, S. Kim, T. Tang, and G. Potirniche, Inter. J. Fatigue 32, 1473 (2010).
http://dx.doi.org/10.1016/j.ijfatigue.2010.01.006
38.
38.T Zhu and J Li, Prog. Mater. Sci. 55, 710 (2010).
http://dx.doi.org/10.1016/j.pmatsci.2010.04.001
39.
39.J. B. Jeon, B. Lee, and Y. W. Chang, Scripta Mater. 64, 494 (2011).
http://dx.doi.org/10.1016/j.scriptamat.2010.11.019
40.
40.G. Monnet and D. Terentyev, Acta Mater. 57, 1416 (2009).
http://dx.doi.org/10.1016/j.actamat.2008.11.030
41.
41.A. Spielmannová, A. Machová, and P. Hora, Acta Mater. 57, 4065 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.04.048
42.
42.M. I. Mendelev, S. Han S, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, Philosophical Magazine 83, 3977 (2003).
http://dx.doi.org/10.1080/14786430310001613264
43.
43.A. Stukowski and K. Albe, Modell. Simul. Maters. Sci. Eng. 18, 025016 (2010).
http://dx.doi.org/10.1088/0965-0393/18/2/025016
44.
44.V. Yamakov, D. Moldovan, K. Rastogi, and D. Wolf, Acta Mater. 54, 4053 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.05.004
45.
45.J. W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.08.004
46.
46.D. Moldovan, V. Yamakov, D. Wolf, and S. P. Phillpot, Phys. Rev. Lett. 89, 206101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.206101
47.
47.V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Nature Mater. 3, 43 (2004).
http://dx.doi.org/10.1038/nmat1035
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928448
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928448
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928448
2015-08-06
2016-12-08

Abstract

Large-scale molecular dynamics (MD) simulations have been performed to investigate the tensile properties and the related atomistic deformation mechanisms of the gradient nano-grained (GNG) structure of bcc Fe (gradient grains with from 25 nm to 105 nm), and comparisons were made with the uniform nano-grained (NG) structure of bcc Fe (grains with = 25 nm). The grain size gradient in the nano-scale converts the applied uniaxial stress to multi-axial stresses and promotes the dislocation behaviors in the GNG structure, which results in extra hardening and flow strength. Thus, the GNG structure shows slightly higher flow stress at the early plastic deformation stage when compared to the uniform NG structure (even with smaller grain size). In the GNG structure, the dominant deformation mechanisms are closely related to the grain sizes. For grains with = 25 nm, the deformation mechanisms are dominated by GB migration, grain rotation and grain coalescence although a few dislocations are observed. For grains with = 54 nm, dislocation nucleation, propagation and formation of dislocation wall near GBs are observed. Moreover, formation of dislocation wall and dislocation pile-up near GBs are observed for grains with = 105 nm, which is the first observation by MD simulations to our best knowledge. The strain compatibility among different layers with various grain sizes in the GNG structure should promote the dislocation behaviors and the flow stress of the whole structure, and the present results should provide insights to design the microstructures for developing strong-and-ductile metals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928448.html;jsessionid=xhsKL9AXs_v2uRsE8LkJyw3l.x-aip-live-03?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928448&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928448&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928448'
Right1,Right2,Right3,