Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
2.K. S. Novoselov, A. K. Geim, A. K. Mozorov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).
3.A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
4.E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dosSantos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
5.Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London) 459, 820 (2009).
6.E. McCann, Phys. Rev. B 74, 161403 (2006).
7.S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6, 770 (2007).
8.G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007).
9.L. Liua and Z. Shen, Appl. Phys. Lett. 95, 252104 (2009).
10.M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
11.M. Y. Han, J.C. Brant, and P. Kim, Phys. Rev. Lett. 104, 056801 (2010).
12.K. Todd, H. Chou, S. Amasha, and D. Goldhaber-Gordon, Nano Lett. 9, 416 (2009).
13.R. Denk, M. Hohage, P. Zeppenfeld, J. Cai, C. A. Pignedoli, H. Sde, R. Fasel, X. Feng, K. Müllen, S. Wang, D. Prezzi, A. Ferretti, A. Ruini, E. Molinari, and P. Ruffieux, Nature Communications 5, 4253 (2014).
14.J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and Walt A. de Heer.
15.J. Palacios, Nature Physics 10, 182 (2014).
16.O. Hod, J. E. Peralta, and G. E. Scuseria, Phys. Rev. B 76, 233401 (2007).
17.K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
18.Y.W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
19.G. Lee and K. Cho, Phys. Rev. B 79, 165440 (2009).
20.F. Cervantes-Sodi, G. Csanyi, S. Piscanec, and A. C. Ferrari, Phys. Rev. B 77, 165427 (2008).
21.N. Gorjizadeh, A. A. Farajian, K. Esfarjani, and Y. Kawazoe, Phys. Rev. B 78, 155427 (2008).
22.A. J. Simbeck, D. Gu, N. Kharche, P. V. Satyam, P. Avouris, and S. K. Nayak, Phys. Rev. B 88, 035413 (2013).
23.Z. F. Wang, Q. Li, H. Zheng, H. Ren, H. Su, Q. W. Shi, and J. Chen, Phys. Rev. B 75, 113406 (2007).
24.X. Peng and S Velasquez, Appl. Phys. Letts. 98, 023112 (2011).
25.Y. Li, X. W. Jiang, Z. F. Liu, and Z. R. Liu, Nano Res. 3, 545 (2010).
26.Y. Lu and J. Guo, Nano Res. 3, 189 (2010).
27.B.O. Tayo, Mater. Focus 3, 248 (2014).
28.Y. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de Oteyza, F. R. Fischer, S. G. Louie, and M. F. Crommie, Nat. Nanotechnology 10, 156 (2015).
29.J. Jiang, R. Saito, Ge. G. Samsonidze, A. Jorio, S. G. Chou, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 75, 035407 (2007).
30.D. Orlikowski, H. Mehrez, J. Taylor, H. Guo, J. Wang, and C. Roland, Phys. Rev. B 63, 155412 (2001).
31.Y. Xue and M. A. Ratner, Phys. Rev. B 70, 205416 (2004).
32.O. Hod, J. E. Peralta, and G. E. Scuseria, J. Chem. Phys. 125, 114704 (2006).
33.H. Hosoya, H. Kumazaki, K. Chida, M. Ohuchi, and Y.-D. Gao, Pure Appl. Chem. 62, 445 (1990).
34.M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).
35.K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59, 8271 (1999).
36.M. Ezawa, Phys. Rev. B 73, 045432 (2006).
37.L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
38.K.-I. Sasaki, S. Murakami, and R. Saito, J. Phys. Soc. Jpn. 75, 074713 (2006).
39.D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev. Lett. 96, 176803 (2006).
40.S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Phys. Rev. B 66, 035412 (2002).
41.D. Porezag, Th. Frauenheim, Th. Köhler, G. Seifert, and R. Kaschner, Phys. Rev. B 51, 12947 (1995).
42.L. Yang, C. H. Park, Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 186801 (2007).
43.D. Prezzi, D. Varsano, A. Ruini, A. Marini, and E. Molinari, Phys. Rev. B 77, 041404(R) (2008).
44.Mathematica, Version 9.0 (Wolfram Research, Inc, Champaign, IL, 2012).
45.B. O. Tayo and S. V. Rotkin, Phys. Rev. B 86, 125431 (2012).
46.J. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79 (2007).

Data & Media loading...


Article metrics loading...



A simple model based on the divide and conquer rule and tight-binding (TB) approximation is employed for studying the role of finite size effect on the electronic properties of elongated graphene nanoribbon (GNR) heterojunctions. In our model, the GNR heterojunction is divided into three parts: a left (L) part, middle (M) part, and right (R) part. The left part is a GNR of width , the middle part is a GNR of width , and the right part is a GNR of width . We assume that the left and right parts of the GNR heterojunction interact with the middle part only. Under this approximation, the Hamiltonian of the system can be expressed as a block tridiagonal matrix. The matrix elements of the tridiagonal matrix are computed using real space nearest neighbor orthogonal TB approximation. The electronic structure of the GNR heterojunction is analyzed by computing the density of states. We demonstrate that for heterojunctions for which = , the band gap of the system can be tuned continuously by varying the length of the middle part, thus providing a new approach to band gap engineering in GNRs. Our TB results were compared with calculations employing divide and conquer rule in combination with density functional theory (DFT) and were found to agree nicely.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd