Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928450
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.K. S. Novoselov, A. K. Geim, A. K. Mozorov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
3.
3.A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
4.
4.E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dosSantos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216802
5.
5.Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London) 459, 820 (2009).
http://dx.doi.org/10.1038/nature08105
6.
6.E. McCann, Phys. Rev. B 74, 161403 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.161403
7.
7.S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6, 770 (2007).
http://dx.doi.org/10.1038/nmat2003
8.
8.G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.073103
9.
9.L. Liua and Z. Shen, Appl. Phys. Lett. 95, 252104 (2009).
http://dx.doi.org/10.1063/1.3276068
10.
10.M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
11.
11.M. Y. Han, J.C. Brant, and P. Kim, Phys. Rev. Lett. 104, 056801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.056801
12.
12.K. Todd, H. Chou, S. Amasha, and D. Goldhaber-Gordon, Nano Lett. 9, 416 (2009).
http://dx.doi.org/10.1021/nl803291b
13.
13.R. Denk, M. Hohage, P. Zeppenfeld, J. Cai, C. A. Pignedoli, H. Sde, R. Fasel, X. Feng, K. Müllen, S. Wang, D. Prezzi, A. Ferretti, A. Ruini, E. Molinari, and P. Ruffieux, Nature Communications 5, 4253 (2014).
http://dx.doi.org/10.1038/ncomms5253
14.
14.J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and Walt A. de Heer.
15.
15.J. Palacios, Nature Physics 10, 182 (2014).
http://dx.doi.org/10.1038/nphys2909
16.
16.O. Hod, J. E. Peralta, and G. E. Scuseria, Phys. Rev. B 76, 233401 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.233401
17.
17.K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17954
18.
18.Y.W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
19.
19.G. Lee and K. Cho, Phys. Rev. B 79, 165440 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165440
20.
20.F. Cervantes-Sodi, G. Csanyi, S. Piscanec, and A. C. Ferrari, Phys. Rev. B 77, 165427 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.165427
21.
21.N. Gorjizadeh, A. A. Farajian, K. Esfarjani, and Y. Kawazoe, Phys. Rev. B 78, 155427 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.155427
22.
22.A. J. Simbeck, D. Gu, N. Kharche, P. V. Satyam, P. Avouris, and S. K. Nayak, Phys. Rev. B 88, 035413 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.035413
23.
23.Z. F. Wang, Q. Li, H. Zheng, H. Ren, H. Su, Q. W. Shi, and J. Chen, Phys. Rev. B 75, 113406 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.113406
24.
24.X. Peng and S Velasquez, Appl. Phys. Letts. 98, 023112 (2011).
http://dx.doi.org/10.1063/1.3536481
25.
25.Y. Li, X. W. Jiang, Z. F. Liu, and Z. R. Liu, Nano Res. 3, 545 (2010).
http://dx.doi.org/10.1007/s12274-010-0015-7
26.
26.Y. Lu and J. Guo, Nano Res. 3, 189 (2010).
http://dx.doi.org/10.1007/s12274-010-1022-4
27.
27.B.O. Tayo, Mater. Focus 3, 248 (2014).
http://dx.doi.org/10.1166/mat.2014.1182
28.
28.Y. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de Oteyza, F. R. Fischer, S. G. Louie, and M. F. Crommie, Nat. Nanotechnology 10, 156 (2015).
http://dx.doi.org/10.1038/nnano.2014.307
29.
29.J. Jiang, R. Saito, Ge. G. Samsonidze, A. Jorio, S. G. Chou, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 75, 035407 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035407
30.
30.D. Orlikowski, H. Mehrez, J. Taylor, H. Guo, J. Wang, and C. Roland, Phys. Rev. B 63, 155412 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.155412
31.
31.Y. Xue and M. A. Ratner, Phys. Rev. B 70, 205416 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.205416
32.
32.O. Hod, J. E. Peralta, and G. E. Scuseria, J. Chem. Phys. 125, 114704 (2006).
http://dx.doi.org/10.1063/1.2349482
33.
33.H. Hosoya, H. Kumazaki, K. Chida, M. Ohuchi, and Y.-D. Gao, Pure Appl. Chem. 62, 445 (1990).
http://dx.doi.org/10.1351/pac199062030445
34.
34.M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).
http://dx.doi.org/10.1143/JPSJ.65.1920
35.
35.K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59, 8271 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8271
36.
36.M. Ezawa, Phys. Rev. B 73, 045432 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045432
37.
37.L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235411
38.
38.K.-I. Sasaki, S. Murakami, and R. Saito, J. Phys. Soc. Jpn. 75, 074713 (2006).
http://dx.doi.org/10.1143/JPSJ.75.074713
39.
39.D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev. Lett. 96, 176803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.176803
40.
40.S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Phys. Rev. B 66, 035412 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.035412
41.
41.D. Porezag, Th. Frauenheim, Th. Köhler, G. Seifert, and R. Kaschner, Phys. Rev. B 51, 12947 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.12947
42.
42.L. Yang, C. H. Park, Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 186801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.186801
43.
43.D. Prezzi, D. Varsano, A. Ruini, A. Marini, and E. Molinari, Phys. Rev. B 77, 041404(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.77.041404
44.
44.Mathematica, Version 9.0 (Wolfram Research, Inc, Champaign, IL, 2012).
45.
45.B. O. Tayo and S. V. Rotkin, Phys. Rev. B 86, 125431 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.125431
46.
46.J. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79 (2007).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928450
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928450
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928450
2015-08-06
2016-09-29

Abstract

A simple model based on the divide and conquer rule and tight-binding (TB) approximation is employed for studying the role of finite size effect on the electronic properties of elongated graphene nanoribbon (GNR) heterojunctions. In our model, the GNR heterojunction is divided into three parts: a left (L) part, middle (M) part, and right (R) part. The left part is a GNR of width , the middle part is a GNR of width , and the right part is a GNR of width . We assume that the left and right parts of the GNR heterojunction interact with the middle part only. Under this approximation, the Hamiltonian of the system can be expressed as a block tridiagonal matrix. The matrix elements of the tridiagonal matrix are computed using real space nearest neighbor orthogonal TB approximation. The electronic structure of the GNR heterojunction is analyzed by computing the density of states. We demonstrate that for heterojunctions for which = , the band gap of the system can be tuned continuously by varying the length of the middle part, thus providing a new approach to band gap engineering in GNRs. Our TB results were compared with calculations employing divide and conquer rule in combination with density functional theory (DFT) and were found to agree nicely.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928450.html;jsessionid=FXEqwtJ_PYWyyCvd1RPaTGx1.x-aip-live-06?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928450&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928450&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928450'
Right1,Right2,Right3,