Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Advanced Materials 22, 4794-4808 (2010).
2.R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Advanced Materials 21, 3504-3509 (2009).
3.D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” Journal of Applied Physics 103, 093102 (2008).
4.H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature materials 9, 205-213 (2010).
5.S. Pillai and M. Green, “Plasmonics for photovoltaic applications,” Solar Energy Materials and Solar Cells 94, 1481-1486 (2010).
6.D. Redfield, “Multiple-pass thin-film silicon solar cell,” Applied Physics Letters 25, 647-648 (1974).
7.E. Yablonovitch, “Statistical ray optics,” JOSA 72, 899-907 (1982).
8.R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n 2 limit,” Optics express 19, A664-A672 (2011).
9.J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano letters 11, 2195-2201 (2010).
10.S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Applied Physics Letters 93, 073307 (2008).
11.K. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Applied Physics Letters 93, 191113 (2008).
12.S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2,” Langmuir 25, 2596-2600 (2009).
13.F. Moreno, B. García-Cámara, J. M. Saiz, and F. González, “Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles,” Optics Express 16, 12487-12504 (2008) 2008/08/18.
14.E. A. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” Journal of Applied Physics 110, 104501 (2011).
15.J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano letters 8, 689-692 (2008).
16.T. Gao, E. Stevens, J.-k. Lee, and P. W. Leu, “Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping,” Optics letters 39, 4647-4650 (2014).
17.D. U. Karatay, M. Salvador, K. Yao, A. K.-Y. Jen, and D. S. Ginger, “Performance limits of plasmon-enhanced organic photovoltaics,” Applied Physics Letters 105, 033304 (2014).
18.S. Pillai, K. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” Journal of applied physics 101, 093105 (2007).
19.M.-Y. Lin, Y. L. Kang, Y.-C. Chen, T.-H. Tsai, S.-C. Lin, Y.-H. Huang et al., “Plasmonic ITO-free polymer solar cell,” Optics express 22, A438-A445 (2014).
20.S. Lee, D. R. Mason, S. In, and N. Park, “Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance,” Optics express 22, A1145-A1152 (2014).
21.H.-H. Hsiao, H.-C. Chang, and Y.-R. Wu, “Design of anti-ring back reflectors for thin-film solar cells based on three-dimensional optical and electrical modeling,” Applied Physics Letters 105, 061108 (2014).
22.Y. Zhang, B. Jia, Z. Ouyang, and M. Gu, “Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells,” Journal of Applied Physics 116, 124303 (2014).
23.S. Morawiec, M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Águas et al., “Broadband photocurrent enhancement in a-Si: H solar cells with plasmonic back reflectors,” Optics express 22, A1059-A1070 (2014).
24.J. You, X. Li, F.-x. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li et al., “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Advanced Energy Materials 2, 1203-1207 (2012).
25.S. Pillai, F. Beck, K. Catchpole, Z. Ouyang, and M. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” Journal of Applied Physics 109, 073105 (2011).
26.S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo et al., “Au@Ag Core–Shell Nanocubes for Efficient Plasmonic Light Scattering Effect in Low Bandgap Organic Solar Cells,” ACS Nano 8, 3302-3312 (2014) 2014/04/22.
27.R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Optics Express 22, A1023-A1028 (2014) 2014/06/30.
28.S. W. Sheehan, H. Noh, G. W. Brudvig, H. Cao, and C. A. Schmuttenmaer, “Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core–Shell–Shell Nanostructures,” The Journal of Physical Chemistry C 117, 927-934 (2013).
29.L. Qiao, D. Wang, L. Zuo, Y. Ye, J. Qian, H. Chen et al., “Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres,” Applied Energy 88, 848-852 (2011).
30.S. Shahin, P. Gangopadhyay, and R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles,” Applied Physics Letters 101, 053109-053109-4 (2012).
31.M. Berginc, U. Opara Krašovec, and M. Topič, “Solution Processed Silver Nanoparticles in Dye-Sensitized Solar Cells,” Journal of Nanomaterials 2014, 1-11 (2014).
32.X. Zhou, H. Li, S. Fu, S. Xie, H. Xu, and J. Wu, “Optical Properties and Plasmon Resonance of Coupled Gold Nanoshell Arrays,” Modern Physics Letters B 25, 109-118 (2011).
33.R. Veenkamp and W. Ye, “Plasmonic metal nanocubes for broadband light absorption enhancement in thin-film a-Si solar cells,” Journal of Applied Physics 115, 124317 (2014).
34.J. R. Cole and N. Halas, “Optimized plasmonic nanoparticle distributions for solar spectrum harvesting,” Applied physics letters 89, 153120-153120-3 (2006).
35.I. Kim, D. Seok Jeong, T. Seong Lee, W. Seong Lee, and K.-S. Lee, “Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer,” Journal of Applied Physics 111, 103121-103121-6 (2012).
36.Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Optics Express 20, 11466-11477 (2012).
37.C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” Journal of Applied Physics 104, 123102-123102-7 (2008).
38.A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. Ö. Güney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” Journal of Applied Physics 116, 093103 (2014).
39.K. Mangersnes, “Back-contacted back-junction silicon solar cells,” 2011.
40.U. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann et al., “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Applied Physics Letters 99, 181105-181105-3 (2011).
41.W. E. Sha, W. C. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Optics letters 36, 478-480 (2011).
42.V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Applied Physics Letters 95, 183503-183503-3 (2009).
43.B. Curtin, R. Biswas, and V. Dalal, “Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells,” Applied Physics Letters 95, 231102-231102-3 (2009).
44.S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Optics Express 21, A60-A76 (2013) 2013/01/14.
45.H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Applied Physics Letters 102 (2013).
46.V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, and D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Solar Energy Materials and Solar Cells 110, 49-57 (2013).
47.J. Gjessing, Photonic crystals for light trapping in solar cells (Oslo University, 2011).
48.R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren et al., “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Physical Review B 87 (2013).
49.L. Wen, F. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Applied Physics Letters 104, 151106 (2014).
50.R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells-a survey of plasmonic nanostructures,” 2012.
51.M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Applied Physics Letters 98, 093117-093117-3 (2011).
52.C. StephanFahr, “PlasmonicsinThinFilmSolarCells,” ed, 2009.
53.K. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793-21800 (2008).
54.R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells-a survey of plasmonic nanostructures,” Optics Express 20 (2012).
55.H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” Journal of Applied Physics 106, 073109-073109-5 (2009).
56.P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B 6, 4370-4379 (1972).
57.H. Wang and L. Wang, “Plasmonic light trapping in an ultrathin photovoltaic layer with film-coupled metamaterial structures,” AIP Advances 5, 027104 (2015).

Data & Media loading...


Article metrics loading...



The effects of Ag nano-strips with triangle, rectangular and trapezoid cross sections on the optical absorption, generation rate, and short-circuit current density of ultra-thin solar cells were investigated. By putting the nano-strips as a grating structure on the top of the solar cells, the waveguide, surface plasmon polariton (SPP), and localized surface plasmon (LSP) modes, which are excited with the assistance of nano-strips, were evaluated in TE and TM polarizations. The results show, firstly, the TM modes are more influential than TE modes in optical and electrical properties enhancement of solar cell, because of plasmonic excitations in TM mode. Secondly, the trapezoid nano-strips reveal noticeable impact on the optical absorption, generation rate, and short-circuit current density enhancement than triangle and rectangular ones. In particular, the absorption of long wavelengths which is a challenge in ultra-thin solar cells is significantly improved by using Ag trapezoid nano-strips.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd