Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, Nature 412, 798 (2001).
2.R. Betti, A. A. Solodov, J. A. Delettrez, and C. Zhou, Phys. Plasmas 13, 100703 (2006).
3.L. Holmlid, Int. J. Mass Spectrom. 352, 1 (2013).
4.S. Badiei, P.U. Andersson, and L. Holmlid, Laser Part. Beams 28, 313 (2010).
5.P.U. Andersson and L. Holmlid, J. Fusion Energy 31, 249 (2012).
6.L. Holmlid, Eur. Phys. J. A 48, 11 (2012).
7.F. Olofson, A. Ehn, J. Bood, and L. Holmlid, in 39th EPS Conference on Plasma Physics 2012 (EPS 2012) and the 16th International Congress on Plasma Physics, Europhysics Conference Abstracts, edited byS. Ratynskaya (Curran Associates, 2013), Vol. 36F, pp. 472-475, ISBN: 9781622769810.
8.L. Holmlid, Nucl. Instr. Meth. B 296, 66 (2013).
9.L. Holmlid, Laser Part. Beams 31, 715 (2013).
10.L. Holmlid, Int. J. Modern Phys. E 22, 1350089 (2013).
11.A. Lipson, B. J. Heuser, C. Castano, G. Miley, B. Lyakhov, and A. Mitin, Phys. Rev. B 72, 212507 (2005).
12.L. Holmlid, H. Hora, G. Miley, and X. Yang, Laser Part. Beams 27, 529 (2009).
13.S. A. Slutz and R. A. Vesey, Phys. Plasmas 12, 062702 (2005).
14.L. Holmlid and S. Olafsson, (submitted).
15.V. A. Smalyuk, Phys. Scr. 86, 058204 (2012).
16.L. Holmlid, J. Fusion Energy 33, 348. DOI: 10.1007/s10894-014-9681-x (2014).
17.F. Olofson and L. Holmlid, Int. J. Mass Spectrom. 374, 33. DOI: 10.1016/j.ijms.2014.10.004 (2014).
18.O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, Nature 506, 343. DOI:10.1038/nature13008 (2014).
19.F. Olofson and L. Holmlid, Int. J. Modern Phys. E 23, 1450050. DOI: 10.1142/S0218301314500505 (2014).
20.F. Winterberg, The release of thermonuclear energy by inertial confinement (World Scientific, 2010).
21.NIST, Physics Laboratory, PSTAR program,
22.F. Olofson and L. Holmlid, Laser Part. Beams 32, 537. doi:10.1017/S0263034614000494 (2014).
23.G.R. Meima and P.G. Menon, Appl. Catal. A 212, 239 (2001).
24.M. Muhler, R. Schlögl, and G. Ertl, J. Catal. 138, 413 (1992).
25.F. Olofson and L. Holmlid, J. Appl. Phys. 111, 123502 (2012).
26.L. Holmlid, Int. J. Modern Phys. E 24, 1550026. DOI: 10.1142/S0218301315500263 (2015).
27.F. Olofson and L. Holmlid, Nucl. Instr. Meth. B 278, 34 (2012).
28.W.E. Burcham and M. Jobes, Nuclear and Particle Physics (Pearson Education, Harlow, England, 1995).

Data & Media loading...


Article metrics loading...



Previous results from laser-induced processes in ultra-dense deuterium D(0) give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u−1. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu) cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles H(0) of ultra-dense hydrogen (size of a few pm) escape with a substantial fraction of the energy. Heat loss to the D gas (at <1 mbar pressure) is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd