Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928574
1.
1.T. Higashi, A. Yamagishi, T. Takeuchi, N. Kawaguchi, S. Sagawa, S. Onishi, and M. Date, Blood 82(4), 1328 (1993).
2.
2.L. Pauling and C.D. Coryell, Proceedings of the National Academy of Sciences of the United States of America. 22(4), 210216 (1936).
http://dx.doi.org/10.1073/pnas.22.4.210
3.
3.E. Fukada, E. , and M. Kaibara, Biorheology 17(1-2), 177 (1980).
4.
4.G. B. Thurston, Biophysical Journal 12(9), 1205 (1972).
http://dx.doi.org/10.1016/S0006-3495(72)86156-3
5.
5.J. F. Stoltz and M. Lucius, Biorheology 18(3-6), 453 (1981).
6.
6.Y. Haik, V. Pai, and C.J. Chen, Journal of Magnetism and Magnetic Materials 194(1-3), 254 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00559-9
7.
7.P.A. Voltairas, D.I. Fotiadis, and L.K. Michalis, Journal of Biomechanics 35(6), 813 (2002).
http://dx.doi.org/10.1016/S0021-9290(02)00034-9
8.
8.E.K. Ruuge and A.N. Rusetski, Journal of Magnetism and Magnetic Materials 122(1-3), 35 (1993).
http://dx.doi.org/10.1016/0304-8853(93)91104-F
9.
9.V. Badescou, O. Rotariu, V. Murariu, and N. Rezlescu, IEEE Transactions on Magnetics 33(6), 4439 (1997).
http://dx.doi.org/10.1109/20.649878
10.
10.W. Andra and H. Nowak, Magnetism in Medicine (Wiley VCH, Berlin, 1998).
11.
11.J. Plavins and M. Lauva, Journal of Magnetism and Magnetic Materials 122(1-3), 349 (1993).
http://dx.doi.org/10.1016/0304-8853(93)91107-I
12.
12.K. Ali and M. Ashraf, Journal of Theoretical and Applied Mechanics 52, 557 (2014).
13.
13.K. Ali, M. Ashraf, and N. Jameel, Canadian Journal of Physics 92(9), 987 (2014).
http://dx.doi.org/10.1139/cjp-2013-0324
14.
14.M. Ashraf, N. Jameel, and K. Ali, Applied Mathematics and Mechanics (English Edition) 34, 1263 (2013).
http://dx.doi.org/10.1007/s10483-013-1743-7
15.
15.A. Sinha and J. C. Misra, Mathematics and Mechanics (English Edition) 33, 649 (2012).
http://dx.doi.org/10.1007/s10483-012-1577-8
16.
16.J. C. Misra, G. C. Shit, and H. J. Rath, Computers & Fluids 37, 1 (2008).
http://dx.doi.org/10.1016/j.compfluid.2006.09.005
17.
17.E. L. Ritman and A. Lerman, Current Cardiology Reviews 3, 43 (2007).
http://dx.doi.org/10.2174/157340307779939907
18.
18.A. R. A. Khaled and K. Vafai, International Journal for Heat and Mass Transfer 46, 4989 (2003).
http://dx.doi.org/10.1016/S0017-9310(03)00301-6
19.
19.S. A. Shehzad, T. Hayat, M. Qasim, and S. Asghar, Brazilian Journal of Chemical Engineering 30, 187 (2013).
http://dx.doi.org/10.1590/S0104-66322013000100020
20.
20.J. Boyd, J. M. Buick, and S. Green, Phys. Fluids 19, 93 (2007).
21.
21.B.R. Sharma and D. Borgohain, International Journal of Innovative Research in Science, Engineering and Technology 7, 14867 (2014).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928574
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928574
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928574
2015-08-10
2016-09-25

Abstract

The purpose of this paper is to numerically study the interaction of an external magnetic field with the flow of a biofluid through a Darcy-Forchhmeir porous channel, due to an oscillatory pressure gradient, in the presence of wall transpiration as well as chemical reaction considerations. We have noticed that if the Reynolds number of the wall transpiration flow is increased, the average (or maximum) velocity of the main flow direction is raised. Similar effect has also been observed for the rheological parameter and the Darcy parameter, whereas an opposite trend has been noted for both the Forchheimer quadratic drag parameter and the magnetic parameter. Further, an increase in the Reynolds number results in straightening the concentration profile, thus making it an almost linear function of the dimensionless spatial variable.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928574.html;jsessionid=CoYabr0ypecMMM6_DnxCF_s8.x-aip-live-03?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928574&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928574&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928574'
Right1,Right2,Right3,