Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928727
1.
1.T. Moriya, Phys. Rev. 120, 91 (1960).
http://dx.doi.org/10.1103/PhysRev.120.91
2.
2.I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957).
3.
3.E. Vedmedenko, L. Udvardi, P. Weinberger, and R. Wiesendanger, Phys. Rev. B 75, 104431 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.104431
4.
4.B. Binz, S. Mühlbauer, F. Jonietz, C. Pfleiderer, A. Rosch, R. Georgii, A. Neubauer, and P. Böni, Science 323, 915 (2009).
http://dx.doi.org/10.1126/science.1166767
5.
5.X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010).
http://dx.doi.org/10.1038/nature09124
6.
6.N. Kanazawa, X. Z. Yu, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nature Mater 10, 106 (2010).
7.
7.K. von Bergmann, S. Heinze, M. Bode, E. Vedmedenko, G. Bihlmayer, S. Blügel, and R. Wiesendanger, Phys. Rev. Lett. 96, 167203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.167203
8.
8.A. Fert, V. Cros, and J. Sampaio, Nature Nanotech 8, 152 (2013).
http://dx.doi.org/10.1038/nnano.2013.29
9.
9.A. Thiaville, S. Rohart, É. Jué, V. Cros, and Al. Fert, EPL 100, 57002 (2012).
http://dx.doi.org/10.1209/0295-5075/100/57002
10.
10.A. Bogdanov and U. Rößler, Phys. Rev. Lett. 87, 037203 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.037203
11.
11.H. Y. Kwon and C. Won, J. Magn. Magn. Mater. 351, 8 (2014).
http://dx.doi.org/10.1016/j.jmmm.2013.09.056
12.
12.O. Boulle, S. Rohart, L. D. Buda-Prejbeanu, E. Jué, I. M. Miron, S. Pizzini, J. Vogel, G. Gaudin, and A. Thiaville, Phys. Rev. Lett. 111, 217203 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.217203
13.
13.N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science 341, 636 (2013).
http://dx.doi.org/10.1126/science.1240573
14.
14.J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nature Nanotech 8, 742 (2013).
http://dx.doi.org/10.1038/nnano.2013.176
15.
15.J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature Nanotech 8, 839 (2013).
http://dx.doi.org/10.1038/nnano.2013.210
16.
16.O. A. Tretiakov and Ar. Abanov, Phys. Rev. Lett. 105, 157201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.157201
17.
17.J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nature Commun 4, 1463 (2013).
http://dx.doi.org/10.1038/ncomms2442
18.
18.Y. Zhou and M. Ezawa, Nature Commun 5, 4652 (2014).
19.
19.M. Finazzi, M. Savoini, A. R. Khorsand, A. Tsukamoto, A. Itoh, L. Duo, A. Kirilyuk, Th. Rasing, and M. Ezawa, Phys. Rev. Lett. 110, 177205 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177205
20.
20.H. Du, W. Ning, M. Tian, and Y. Zhang, EPL 101, 37001 (2013).
http://dx.doi.org/10.1209/0295-5075/101/37001
21.
21.A. Hubert and A. Bogdanov, J. Magn. Magn. Mater. 195, 182 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)01038-5
22.
22.S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.184422
23.
23.S. Zhang, J. Wang, Q. Zheng, Q. Zhu, X. Liu, S. Chen, C. Jin, Q. Liu, C. Jia, and D. Xue, New J. Phys. 17, 023061 (2015).
http://dx.doi.org/10.1088/1367-2630/17/2/023061
24.
24.M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.2a3 (2002). http://math.nist.gov/oommf.
25.
25.S. Heinze, K. Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nature Physics 7, 713 (2011).
http://dx.doi.org/10.1038/nphys2045
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928727
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928727
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928727
2015-08-13
2016-12-05

Abstract

An interesting type of skyrmion-like spin texture, 2π-vortex, is obtained in a thin nano-disk with Dzyaloshinskii-Moriya interaction. We have simulated the existence of 2π-vortex by micromagnetic method. Furthermore, the spin polarized current is introduced in order to drive the motion of 2π-vortex in a nano-disk with diameter = 140 nm. When the current density matches with the current injection area, 2π-vortex soon reaches a stable precession (3∼4 ns). The relationship between the precession frequency of 2π-vortex and the current density is almost linear. It may have potential use in spin torque nano-oscillators.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928727.html;jsessionid=eqmvHTe0EN44tZTnjVc7-zbN.x-aip-live-06?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928727&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928727&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928727'
Right1,Right2,Right3,