Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928735
1.
1.I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics (Cambridge University Press, 2009).
2.
2.D. I. Lyakh, M. Musiał, V. F. Lotrich, and R. J. Bartlett, Chem. Rev. 112, 182 (2012).
http://dx.doi.org/10.1021/cr2001417
3.
3.D. C. Comeau and R. J. Bartlett, Chem. Phys. Lett. ISSN: 0009-2614 207, 414 (1993).
http://dx.doi.org/10.1016/0009-2614(93)89023-B
4.
4.J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
http://dx.doi.org/10.1063/1.464746
5.
5.A. I. Krylov, Ann. Rev. Phys. Chem. 59, 433 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093602
6.
6.E. R. Davidson, J. Chem. Phys. 41, 656 (1964).
http://dx.doi.org/10.1063/1.1725942
7.
7.K. Morokuma and S. Iwata, Chem. Phys. Lett. 16, 192 (1972).
http://dx.doi.org/10.1016/0009-2614(72)80489-5
8.
8.Y. Sajeev, M. Sindelka, and N. Moiseyev, J. Chem. Phys. 128, 061101(4 pages) (2008).
http://dx.doi.org/10.1063/1.2837456
9.
9.G. M. J. Barca, A. T. B. Gilbert, and P. M. W. Gill, J. Chem. Phys. 141, 111104 (2014).
http://dx.doi.org/10.1063/1.4896182
10.
10.Y. Sajeev, Chem. Phys. Lett. 587, 105 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.09.052
11.
11.K. Kowalski and P. Piecuch, J. Chem. Phys. 120, 1715 (2004).
http://dx.doi.org/10.1063/1.1632474
12.
12.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
13.
13.D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993).
http://dx.doi.org/10.1063/1.464303
14.
14.H. Larsen, J. Olsen, P. Jørgensen, and O. Christiansen, J. Chem. Phys. 113, 6677 (2000).
http://dx.doi.org/10.1063/1.1311294
15.
15.T. Yanai and G. K.-L. Chan, J. Chem. Phys. 124, 194106 (2006).
http://dx.doi.org/10.1063/1.2196410
16.
16.X. Li and J. Paldus, J. Chem. Phys. 129, 054104 (2008).
http://dx.doi.org/10.1063/1.2961033
17.
17.K. K. Irikura, J. Phys. Chem. Ref. Data 36, 389 (2007).
http://dx.doi.org/10.1063/1.2436891
18.
18.Y. R. Luo, Bond dissociation energies, in CRC Handbook of Chemistry and Physics, 90th ed. (CRC Press/Taylor and Francis, Boca Raton, 2009).
19.
19.N. A. Piro, J. S. Figueroa, J. T. McKellar, and C. C. Cummins, Science 313, 1276 (2006).
http://dx.doi.org/10.1126/science.1129630
20.
20.A. Velian, M. Nava, M. Temprado, Y. Zhou, R. W. Field, and C. C. Cummins, J. Am. Chem. Soc. 136, 13586 (2014).
http://dx.doi.org/10.1021/ja507922x
21.
21.P. E. M. Siegbahn, J. Chem. Phys. 75, 2314 (1981).
http://dx.doi.org/10.1063/1.442294
22.
22.G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, 1966), Vol.III.
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4928735 for the total energies corresponding to thetrue ground state potential energy curve.[Supplementary Material]
24.
24.A. I. Krylov, Chemical Physics Letters 338, 375 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00287-1
25.
25.D. Casanova, L. V. Slipchenko, A. I. Krylov, and M. Head-Gordon, J. Chem. Phys. 130, 044103 (2009).
http://dx.doi.org/10.1063/1.3066652
26.
26.M. Musiał, A. Perera, and R. J. Bartlett, J. Chem. Phys. 134, 114108 (2011).
http://dx.doi.org/10.1063/1.3567115
27.
27.M. Musiał, S. A. Kucharski, and R. J. Bartlett, J. Chem. Theory Comput. 7, 3088 (2011).
http://dx.doi.org/10.1021/ct200195q
28.
28.K. Kowalski and P. Piecuch, J. Chem. Phys. 120, 1715 (2004).
http://dx.doi.org/10.1063/1.1632474
29.
29.K. M. Ervin, S. Gronert, S. E. Barlow, M. K. Gilles, A. G. Harrison, V. M. Bierbaum, C. H. DePuy, W. C. Lineberger, and G. B. Ellison, J. Am. Chem. Soc. 112, 5750 (1990).
http://dx.doi.org/10.1021/ja00171a013
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928735
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928735
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928735
2015-08-13
2016-09-24

Abstract

The equation-of-motion coupled cluster (EOMCC) method based on the excited state Hartree-Fock (ESHF) solutions is shown to be appropriate for computing the entire ground state potential energy curves of strongly correlated higher-order bonds. The new approach is best illustrated for the homolytic dissociation of higher-order bonds in molecules. The required multireference character of the wavefunction is introduced through the linear excitation operator of the EOMCC method. Even at the singles and doubles level of cluster excitation truncation, the nonparallelity error of the ground state potential energy curve from the ESHF based EOMCC method is small.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928735.html;jsessionid=o9sbMsiTp3TMSIGm2s_ADI5j.x-aip-live-06?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928735&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928735&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928735'
Right1,Right2,Right3,