Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928863
1.
1.D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca RatonFL , USA, 1995).
2.
2.Je-Hyeong Bahk, Tela Favaloro, and Ali Shakouri, Annual Review of Heat Transfer 16(1), (2013).
http://dx.doi.org/10.1615/AnnualRevHeatTransfer.v16.30
3.
3.Miguel Muñoz Rojo, Olga Caballero Calero, A. F. Lopeandia, J. Rodriguez-Viejo, and Marisol Martin-Gonzalez, Nanoscale 5, 11526 (2013).
http://dx.doi.org/10.1039/c3nr03242f
4.
4.Yuanjian Zhang, Toshiyuki Mori, Jinhua Ye, and Markus Antonietti, Journal of the American Chemical Society 132(18), 6294 (2010).
http://dx.doi.org/10.1021/ja101749y
5.
5.Lu Huang, Yi Huang, Jiajie Liang, Xiangjian Wan, and Yongsheng Chen, Nano Res. 4(7), 675 (2011).
http://dx.doi.org/10.1007/s12274-011-0123-z
6.
6.H. Julian Goldsmid, Introduction to Thermoelectricity (Springer Berlin Heidelberg, 2010), Vol. 121, p. 139.
7.
7.Yadunath Singh, International Journal of Modern Physics: Conference Series 22, 745 (2013).
http://dx.doi.org/10.1142/S2010194513010970
8.
8.Dieter K. Schroder, Semiconductor material and device characterization (John Wiley & Sons, New Jersey, 2006).
9.
9.Standard method for measuring resistivity of silicon slices with a collinear four-point probe. (Annual Book of ASTM Standards, West Conshohocken, PA, 1996).
10.
10.M. P. Albert and J.F. Combs, IEEE Transactions on Electron Devices ED-11(148), (1964).
11.
11.Paul V. Pesavento, Reid J. Chesterfield, Christopher R. Newman, and C. Daniel Frisbie, Journal of Applied Physics 96(12), 7312 (2004).
http://dx.doi.org/10.1063/1.1806533
12.
12.Anastassios Mavrokefalos, Michael T. Pettes, Feng Zhou, and Li Shi, Review of Scientific Instruments 78(3), (2007).
http://dx.doi.org/10.1063/1.2712894
13.
13.A. A. Ramadan, R. D. Gould, and A. Ashour, Thin Solid Films 239(2), 272 (1994).
http://dx.doi.org/10.1016/0040-6090(94)90863-X
14.
14.B. Yang, W. L. Liu, J. L. Liu, K. L. Wang, and G. Chen, Applied Physics Letters 81(19), 3588 (2002).
http://dx.doi.org/10.1063/1.1515876
15.
15.Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts, and Brooks O’Quinn, Nature 413(6856), 597 (2001).
http://dx.doi.org/10.1038/35098012
16.
16.H. H. Berger, Solid-State Electronics 15(2), 145 (1972).
http://dx.doi.org/10.1016/0038-1101(72)90048-2
17.
17.R. H. Cox and H. Strack, Solid-State Electronics 10(12), 1213 (1967).
http://dx.doi.org/10.1016/0038-1101(67)90063-9
18.
18.Luciana W. da Silva and Massoud Kaviany, International Journal of Heat and Mass Transfer 47(10-11), 2417 (2004).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.024
19.
19.Ya-Huei Chang, Shien-Ping Feng, Jian Yang, Bed Poudel, Bo Yu, b Zhifeng Ren, and Gang Chen, Physical Chemistry Chemical Physics 15, 6757 (2013).
http://dx.doi.org/10.1039/c3cp50993a
20.
20.A. Jacquot, N. Farag, M. Jaegle, M. Bobeth, J. Schmidt, D. Ebling, and H. Böttner, Journal of Elec Materi 39(9), 1861 (2010).
http://dx.doi.org/10.1007/s11664-009-1059-x
21.
21.C.V. Manzano, A. Rojas, M. Decepida, B. Abad, Y. Feliz, O. Caballero-Calero, D.A. Borca-Tasciuc, and M. Martín-González, J Solid State Electrochem 17(7), 2071 (2013).
http://dx.doi.org/10.1007/s10008-013-2066-7
22.
22.R. Melamud, A.M. Pettes, and S. Higuchi, 26th International Conference on Thermoelectrics (ICT) (2007).
23.
23.Miguel Muñoz-Rojo, Olga Caballero-Calero, and Marisol Martín-González, Applied Physics Letters 103(18), (2013).
http://dx.doi.org/10.1063/1.4826684
24.
24.Frank G. Shi A. Mikrajuddin, H.K. Kim, and Kikuo Okuyama, Materials Science in Semiconductor Processing 2(4), 321 (1999).
http://dx.doi.org/10.1016/S1369-8001(99)00036-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928863
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928863
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928863
2015-08-14
2016-09-28

Abstract

The out of plane electrical conductivity of highly anisotropic BiTefilms grown via electro-deposition process was determined using four probe current-voltage measurements performed on 4.6 - 7.2 μm thickness BiTe mesa structures with 80 - 120 μm diameters sandwiched between metallic filmelectrodes. A three-dimensional finite element model was used to predict the electric field distribution in the measured structures and take into account the non-uniform distribution of the current in the electrodes in the vicinity of the probes. The finite-element modeling shows that significant errors could arise in the measured filmelectrical conductivity if simpler one-dimensional models are employed. A high electrical conductivity of (3.2 ± 0.4) ⋅ 105 S/m is reported along the out of plane direction for BiTefilms highly oriented in the [1 1 0] direction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928863.html;jsessionid=BnJY7Y8RMTHicLlUNnTXYJi9.x-aip-live-02?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928863&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928863&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928863'
Right1,Right2,Right3,