Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4928868
1.
1.A. B. Matsko, ed., Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2010).
2.
2.G. Lin, S. Diallo, R. Henriet, M. Jacquot, and Y. K. Chembo, Opt. Lett. 39, 6009 (2014).
http://dx.doi.org/10.1364/OL.39.006009
3.
3.Y. Shen and J.-T. Shen, Phys. Rev. A 85, 013801 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.013801
4.
4.V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, Nano Lett. 13, 3347 (2013).
http://dx.doi.org/10.1021/nl401633y
5.
5.K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 9, 1355 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.819465
6.
6.K. Djordjev, S. J. Choi, and P. D. Dapkus, IEEE Photon. Technol. Lett. 14, 828 (2002).
http://dx.doi.org/10.1109/LPT.2002.1003107
7.
7.M. Pollinger and A. Rauschenbeutel, Opt. Express 18, 17764 (2010).
http://dx.doi.org/10.1364/OE.18.017764
8.
8.X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).
http://dx.doi.org/10.1364/JOSAB.13.001725
9.
9.J. G. Hartnett, M. E. Tobar, E. N. Ivanov, and A. N. Luiten, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 60, 1041 (2013).
http://dx.doi.org/10.1109/TUFFC.2013.2668
10.
10.A. A. Savchenkov, V. S. Ilchenko, T. Handley, and L. Maleki, IEEE Photon. Technol. Lett. 15, 543 (2003).
http://dx.doi.org/10.1109/LPT.2003.809313
11.
11.A. V. Dormidontov, A. Y. Kirichenko, Y. F. Lonin, A. G. Ponomarev, Y. V. Prokopenko, G. V. Sotnikov, V. T. Uvarov, and Y. F. Filippov, Tech. Phys. Lett. 38, 85 (2012).
http://dx.doi.org/10.1134/S106378501201021X
12.
12.V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, IEEE Photon. Technol. Lett. 14, 1602 (2002).
http://dx.doi.org/10.1109/LPT.2002.803916
13.
13.E. N. Shaforost, A. A. Barannik, N. Klein, S. A. Vitusevich, and A. Offenhaeusser, J. Appl. Phys. 104, 074111 (2008).
http://dx.doi.org/10.1063/1.2991182
14.
14.V. B. Yurchenko, Prog. Electromagn. Res. M 24, 265 (2012).
http://dx.doi.org/10.2528/PIERM12042902
15.
15.A. A. Vikharev, G. G. Denisov, V. V. Kocharovskii, S. V. Kuzikov, V. V. Parshin, N. Y. Peskov, A. N. Stepanov, D. I. Sobolev, and M. Y. Shmelev, Tech. Phys. Lett. 33, 735 (2007).
http://dx.doi.org/10.1134/S1063785007090064
16.
16.L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, Opt. Lett. 32, 680 (2007).
http://dx.doi.org/10.1364/OL.32.000680
17.
17.I. Chatzakis, P. Tassin, L. Luo, N.-H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, Appl. Phys. Lett. 103, 043101 (2013).
http://dx.doi.org/10.1063/1.4813620
18.
18.H.-X. Zheng, J.-C. Ding, and D.-Y. Yu, Int. J. Infrared and MM Waves 27, 55 (2006).
http://dx.doi.org/10.1007/s10762-006-9001-2
19.
19.M. F. Akay, Y. Prokopenko, and S. Kharkovsky, Microwave Opt. Technol. Lett. 40, 96 (2004).
http://dx.doi.org/10.1002/mop.11296
20.
20.X. Du, S. Vincent, and T. Lu, Opt. Express 21, 22012 (2013).
http://dx.doi.org/10.1364/OE.21.022012
21.
21.M. Oxborrow, IEEE Trans. Microw. Theory Tech. 55, 1209 (2007).
http://dx.doi.org/10.1109/TMTT.2007.897850
22.
22.V. B. Yurchenko, A. Altintas, M. Ciydem, and S. Koc, Prog. Electromagn. Res. C 43, 29 (2013).
http://dx.doi.org/10.2528/PIERC13062803
23.
23.A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4928868
Loading
/content/aip/journal/adva/5/8/10.1063/1.4928868
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4928868
2015-08-14
2016-09-30

Abstract

We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED) of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor) that makes light-microwave interaction observable with an ordinary light (no laser) at conventional brightness (like an office lighting) in quasi-optical microwave structures at rather long (centimeter-scale) wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4928868.html;jsessionid=PaKKMsHEUQ-mlbVmxhrBs9Ba.x-aip-live-06?itemId=/content/aip/journal/adva/5/8/10.1063/1.4928868&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4928868&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4928868'
Right1,Right2,Right3,