Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4929328
1.
1.S. Patel, A. Chauhan, and R. Vaish, Materials Research Express 1(2), 025504 (2014).
http://dx.doi.org/10.1088/2053-1591/1/2/025504
2.
2.A. Chauhan, S. Patel, and R. Vaish, AIP Advances 4(8), 087106 (2014).
http://dx.doi.org/10.1063/1.4892608
3.
3.S. Patel, A. Chauhan, and R. Vaish, Journal of Applied Physics 115(8), 084908 (2014).
http://dx.doi.org/10.1063/1.4866877
4.
4.S. Patel, A. Chauhan, and R. Vaish, Journal of Applied Physics 117(8), 084102 (2015).
http://dx.doi.org/10.1063/1.4908596
5.
5.S. Yao, W. Ren, H. Ji, X. Wu, P. Shi, D. Xue, X. Ren, and Z.-G. Ye, Journal of Physics D: Applied Physics 45(19), 195301 (2012).
http://dx.doi.org/10.1088/0022-3727/45/19/195301
6.
6.S. Patel, A. Chauhan, and R. Vaish, Energy Technology 3(1), 70-76 (2015).
http://dx.doi.org/10.1002/ente.201402118
7.
7.F. Wang, C. M. Leung, Y. Tang, T. Wang, and W. Shi, Journal of Applied Physics 114(16), 164105 (2013).
http://dx.doi.org/10.1063/1.4825122
8.
8.W. Li, P. Li, H. Zeng, J. Hao, and J. Zhai, Applied Physics Letters 104(17), 172903 (2014).
http://dx.doi.org/10.1063/1.4874805
9.
9.S. Mornet, C. Elissalde, O. Bidault, F. Weill, E. Sellier, O. Nguyen, and M. Maglione, Chemistry of Materials 19(5), 987-992 (2007).
http://dx.doi.org/10.1021/cm0616735
10.
10.J. Li, P. Khanchaitit, K. Han, and Q. Wang, Chemistry of Materials 22(18), 5350-5357 (2010).
http://dx.doi.org/10.1021/cm101614p
11.
11.B. Noheda, D. Cox, G. Shirane, J. Gonzalo, L. Cross, and S.-E. Park, Applied Physics Letters 74(14), 2059-2061 (1999).
http://dx.doi.org/10.1063/1.123756
12.
12.Z.-G. Ye and M. Dong, Journal of Applied Physics 87(5), 2312-2319 (2000).
http://dx.doi.org/10.1063/1.372180
13.
13.D. Damjanovic, Applied Physics Letters 97(6), 062906 (2010).
http://dx.doi.org/10.1063/1.3479479
14.
14.I. Grinberg, M. R. Suchomel, P. K. Davies, and A. M. Rappe, Journal of Applied Physics 98(9), 094111 (2005).
http://dx.doi.org/10.1063/1.2128049
15.
15.X. Liu, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, Journal of Applied Physics 106(7), 074112-074114 (2009).
http://dx.doi.org/10.1063/1.3243169
16.
16.X. Zhao, B. Fang, H. Cao, Y. Guo, and H. Luo, Materials Science and Engineering: B 96(3), 254-262 (2002).
http://dx.doi.org/10.1016/S0921-5107(02)00354-9
17.
17.K. Rajan, M. Shanthi, W. Chang, J. Jin, and L. Lim, Sensors and Actuators A: Physical 133(1), 110-116 (2007).
http://dx.doi.org/10.1016/j.sna.2006.03.036
18.
18.S. Choi, T. R. Shrout, S. Jang, and A. Bhalla, Materials Letters 8(6), 253-255 (1989).
http://dx.doi.org/10.1016/0167-577X(89)90115-8
19.
19.J. Peräntie, J. Hagberg, A. Uusimäki, and H. Jantunen, Physical Review B 82(13), 134119 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134119
20.
20.E. Perez-Delfin, J. Garcia, D. Ochoa, R. Pérez, F. Guerrero, and J. A. Eiras, Journal of Applied Physics 110(3), 034106 (2011).
http://dx.doi.org/10.1063/1.3622338
21.
21.J. C. Frederick, Graduate Thesis and dissertations, Iowa State University, 2010.
22.
22.S. Patel, A. Chauhan, and R. Vaish, Energy Technology 2(5), 480-485 (2014).
http://dx.doi.org/10.1002/ente.201300183
23.
23.L. Jin, F. Li, and S. Zhang, Journal of the American Ceramic Society 97(1), 1-27 (2014).
http://dx.doi.org/10.1111/jace.12773
24.
24.H.-B. Fang, J.-Q. Liu, Z.-Y. Xu, L. Dong, L. Wang, D. Chen, B.-C. Cai, and Y. Liu, Microelectronics Journal 37(11), 1280-1284 (2006).
http://dx.doi.org/10.1016/j.mejo.2006.07.023
25.
25.S. Young, J. Zhang, W. Hong, and X. Tan, Journal of Applied Physics 113(5), 054101 (2013).
http://dx.doi.org/10.1063/1.4790135
26.
26.D. Viehland, L. Ewart, J. Powers, and J. Li, Journal of Applied Physics 90(5), 2479-2483 (2001).
http://dx.doi.org/10.1063/1.1389480
27.
27.S. Patel, A. Chauhan, and R. Vaish, Materials Research Express 1(4), 045502 (2014).
http://dx.doi.org/10.1088/2053-1591/1/4/045502
28.
28.Q. Zhang, L. Wang, J. Luo, Q. Tang, and J. Du, International Journal of Applied Ceramic Technology 7(s1), E124-E128 (2010).
http://dx.doi.org/10.1111/j.1744-7402.2009.02456.x
29.
29.Q. Zhang, L. Wang, J. Luo, Q. Tang, and J. Du, Journal of the American Ceramic Society 92(8), 1871-1873 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03109.x
30.
30.X. Hao, Journal of Advanced Dielectrics 3(01) (2013).
http://dx.doi.org/10.1142/S2010135X13300016
31.
31.T. Wu, Y. Pu, and K. Chen, Ceramics International 39(6), 6787-6793 (2013).
http://dx.doi.org/10.1016/j.ceramint.2013.02.009
32.
32.Z. Wu, H. Liu, M. Cao, Z. Shen, Z. Yao, H. Hao, and D. Luo, Journal of the Ceramic Society of Japan 116(1350), 345-349 (2008).
http://dx.doi.org/10.2109/jcersj2.116.345
33.
33.R. Wu, P. Du, W. Weng, and G. Han, Journal of the European Ceramic Society 26(9), 1611-1617 (2006).
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.239
34.
34.R. Tandon, V. Singh, N. Narayanaswami, and V. Hans, Ferroelectrics 196(1), 117-120 (1997).
http://dx.doi.org/10.1080/00150199708224145
35.
35.K. Yao, S. Yu, and F. E. H. Tay, Applied Physics Letters 88(5), 052904 (2006).
http://dx.doi.org/10.1063/1.2171801
36.
36.S. Patel, A. Chauhan, A. Chauhan, and R. Vaish, Materials Research Express 2(3), 035501 (2015).
http://dx.doi.org/10.1088/2053-1591/2/3/035501
37.
37.T. R. Shrout and S. J. Zhang, Journal of Electroceramics 19(1), 113-126 (2007).
http://dx.doi.org/10.1007/s10832-007-9047-0
38.
38.S. Zhao, G. Li, A. Ding, T. Wang, and Q. Yin, Journal of Physics D: Applied Physics 39(10), 2277 (2006).
http://dx.doi.org/10.1088/0022-3727/39/10/042
39.
39.W. Ge, H. Liu, X. Zhao, B. Fang, X. Li, F. Wang, D. Zhou, P. Yu, X. Pan, and D. Lin, Journal of Physics D: Applied Physics 41(11), 115403 (2008).
http://dx.doi.org/10.1088/0022-3727/41/11/115403
40.
40.S.-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.-J. Kleebe, and J. Rödel, Journal of Applied Physics 103(3), 034107 (2008).
http://dx.doi.org/10.1063/1.2838472
41.
41.S. Zhang, R. Xia, T. R. Shrout, G. Zang, and J. Wang, Solid State Communications 141(12), 675-679 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.01.007
42.
42.J. Ryu, J.-J. Choi, B.-D. Hahn, D.-S. Park, W.-H. Yoon, and K.-H. Kim, Applied Physics Letters 90(15), 152901-152903 (2007).
http://dx.doi.org/10.1063/1.2720751
43.
43.Q. Zheng, D. Lin, X. Wu, C. Xu, C. Yang, and K. Kwok, Journal of Materials Science: Materials in Electronics 21(6), 625-629 (2010).
http://dx.doi.org/10.1007/s10854-009-9967-3
44.
44.X. Wang, Y. Zhang, X. Song, Z. Yuan, T. Ma, Q. Zhang, C. Deng, and T. Liang, Journal of the European Ceramic Society 32(3), 559-567 (2012).
http://dx.doi.org/10.1016/j.jeurceramsoc.2011.09.024
45.
45.R. Vaish and K. Varma, Philosophical Magazine 89(19), 1555-1564 (2009).
http://dx.doi.org/10.1080/14786430903022689
46.
46.R. Vaish and K. Varma, Journal of Applied Physics 106(11), 114109-114105 (2009).
http://dx.doi.org/10.1063/1.3269699
47.
47.Q. Xu, D. Zhan, D.-P. Huang, H.-X. Liu, W. Chen, and F. Zhang, Journal of Alloys and Compounds 558, 77-83 (2013).
http://dx.doi.org/10.1016/j.jallcom.2012.12.164
48.
48.T. Wu, Y. Pu, T. Zong, and P. Gao, Journal of Alloys and Compounds 584, 461-465 (2014).
http://dx.doi.org/10.1016/j.jallcom.2013.09.072
49.
49.V. S. Puli, A. Kumar, R. Katiyar, X. Su, C. Busta, D. Chrisey, and M. Tomozawa, Journal of Non-Crystalline Solids 358(24), 3510-3516 (2012).
http://dx.doi.org/10.1016/j.jnoncrysol.2012.05.018
50.
50.M. Marsilius, J. Frederick, W. Hu, X. Tan, T. Granzow, and P. Han, Advanced Functional Materials 22(4), 797-802 (2012).
http://dx.doi.org/10.1002/adfm.201101301
51.
51.P. Yu, Y. Ji, N. Neumann, S.-g. Lee, H. Luo, and M. Es-Souni, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 59(9), 1983-1989 (2012).
http://dx.doi.org/10.1109/TUFFC.2012.2417
52.
52.C. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, and R. Vaish, Energy & Environmental Science 7(12), 3836-3856 (2014).
http://dx.doi.org/10.1039/C4EE01759E
53.
53.L. Liu, X. Li, X. Wu, Y. Wang, W. Di, D. Lin, X. Zhao, H. Luo, and N. Neumann, Applied Physics Letters 95(19), 192903 (2009).
http://dx.doi.org/10.1063/1.3263139
54.
54.G. Sebald, E. Lefeuvre, and D. Guyomar, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 55(3), 538-551 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.680
55.
55.H. Zhang, S. Jiang, and K. Kajiyoshi, Journal of the American Ceramic Society 93(7), 1957-1964 (2010).
56.
56.Y. Ivry, V. Lyahovitskaya, I. Zon, I. Lubomirsky, E. Wachtel, and A. L. Roytburd, Applied Physics Letters 90(17), 172905-172903 (2007).
http://dx.doi.org/10.1063/1.2730749
57.
57.J. Karthik and L. Martin, Physical Review B 84(2), 024102 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.024102
58.
58.H. Tabata and T. Kawai, Applied Physics Letters 70(3), 321-323 (1997).
http://dx.doi.org/10.1063/1.118202
59.
59.J. Huang, Y. Zhang, T. Ma, H. Li, and L. Zhang, Applied Physics Letters 96(4), 042902 (2010).
http://dx.doi.org/10.1063/1.3293456
60.
60.J. Zhang, Z. Yin, M.-S. Zhang, and J. F. Scott, Solid State Communications 118(5), 241-246 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00085-0
61.
61.C. Canedy, H. Li, S. Alpay, L. Salamanca-Riba, A. Roytburd, and R. Ramesh, Applied Physics Letters 77(11), 1695-1697 (2000).
http://dx.doi.org/10.1063/1.1308531
62.
62.Q. Zhang, J. Zhao, K. Uchino, and J. Zheng, Journal of Materials Research 12(01), 226-234 (1997).
http://dx.doi.org/10.1557/JMR.1997.0030
63.
63.G. Arlt, Ferroelectrics 76(1), 451-458 (1987).
http://dx.doi.org/10.1080/00150198708016967
64.
64.H. Dederichs and G. Arlt, Ferroelectrics 68(1), 281-292 (1986).
http://dx.doi.org/10.1080/00150198608238758
65.
65.P. Divya, G. Vignesh, and V. Kumar, Journal of Physics D: Applied Physics 40(24), 7804 (2007).
http://dx.doi.org/10.1088/0022-3727/40/24/032
66.
66.B. Zhang, X. Yao, and L. Zhang, Ceramics International 30(7), 1767-1771 (2004).
http://dx.doi.org/10.1016/j.ceramint.2003.12.127
67.
67.S.-G. Lee, C.-I. Kim, and B.-C. Kim, Journal of the European Ceramic Society 24(1), 157-162 (2004).
http://dx.doi.org/10.1016/S0955-2219(03)00252-8
68.
68.D. Zhang, T. W. Button, V. O. Sherman, A. K. Tagantsev, T. Price, and D. Iddles, Journal of the European Ceramic Society 30(2), 407-412 (2010).
http://dx.doi.org/10.1016/j.jeurceramsoc.2009.05.003
69.
69.S.-F. Wang, T. C. K. Yang, Y.-R. Wang, and Y. Kuromitsu, Ceramics International 27(2), 157-162 (2001).
http://dx.doi.org/10.1016/S0272-8842(00)00055-9
70.
70.A. Ullah, C. W. Ahn, R. A. Malik, and I. W. Kim, Physica B: Condensed Matter 444, 27-33 (2014).
http://dx.doi.org/10.1016/j.physb.2014.03.034
71.
71.J. Tang, F. Wang, X. Zhao, H. Luo, L. Luo, and W. Shi, Ceramics International 41(4), 5888-5893 (2015).
http://dx.doi.org/10.1016/j.ceramint.2015.01.020
72.
72.W. Cai, C. Fu, Z. Lin, and X. Deng, Ceramics International 37(8), 3643-3650 (2011).
http://dx.doi.org/10.1016/j.ceramint.2011.06.024
73.
73.W. Cai, C. Fu, J. Gao, Z. Lin, and X. Deng, Ceramics International 38(4), 3367-3375 (2012).
http://dx.doi.org/10.1016/j.ceramint.2011.12.047
74.
74.M. D. Nguyen, T. Q. Trinh, M. Dekkers, E. P. Houwman, H. N. Vu, and G. Rijnders, Ceramics International 40(1), 1013-1018 (2014).
http://dx.doi.org/10.1016/j.ceramint.2013.06.098
75.
75.Y. Tang and H. Luo, Journal of Physics D: Applied Physics 42(7), 075406 (2009).
http://dx.doi.org/10.1088/0022-3727/42/7/075406
76.
76.D. Zhan, Q. Xu, D.-P. Huang, H.-X. Liu, W. Chen, and F. Zhang, Physica B: Condensed Matter 440, 67-72 (2014).
http://dx.doi.org/10.1016/j.physb.2014.01.025
77.
77.H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, and Z. Pei, Journal of Applied Physics 105(12), 124104-124106 (2009).
http://dx.doi.org/10.1063/1.3153128
78.
78.K. Preethi Meher, R. VAISH, J. HOU, D. KRSMANOVIC, R. KUMAR, and K. VARMA, International journal of materials research 104(2), 168-174 (2013).
http://dx.doi.org/10.3139/146.110852
79.
79.F. Wang, M. Xu, Y. Tang, T. Wang, W. Shi, and C. M. Leung, Journal of the American Ceramic Society 95(6), 1955-1959 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2012.05119.x
80.
80.X.-G. Tang and H. L.-W. Chan, Journal of Applied Physics 97(3), 034109 (2005).
http://dx.doi.org/10.1063/1.1849817
81.
81.H. Cheng, W. Zhou, H. Du, F. Luo, D. Zhu, and B. Xu, Journal of Materials Science 49(4), 1824-1831 (2014).
http://dx.doi.org/10.1007/s10853-013-7870-z
82.
82.F. Bahri and H. Khemakhem, Ceramics International 39(7), 7571-7575 (2013).
http://dx.doi.org/10.1016/j.ceramint.2013.03.010
83.
83.H. Cheng, W. Zhou, H. Du, F. Luo, D. Zhu, D. Jiang, and B. Xu, Journal of Alloys and Compounds 579, 192-197 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.06.077
84.
84.B. Wen, Y. Zhang, X. Liu, L. Ma, and X. Wang, Journal of Materials Science 47(10), 4299-4304 (2012).
http://dx.doi.org/10.1007/s10853-012-6280-y
85.
85.Y. Zhang, X. Zhong, Z. Chen, J. Wang, and Y. Zhou, Journal of Applied Physics 110(1), 014102 (2011).
http://dx.doi.org/10.1063/1.3600237
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4929328
Loading
/content/aip/journal/adva/5/8/10.1063/1.4929328
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4929328
2015-08-17
2016-12-06

Abstract

This study systematically investigates the phenomenon of internal clamping in ferroelectric materials through the formation of glass-ceramic composites. Lead-free 0.715Bi Na TiO−0.065BaTiO−0.22SrTiO (BNT-BT-ST) bulk ferroelectric ceramic was selected for the course of investigation. 3BaO − 3TiO − BO (BTBO) glass was then incorporated systematically to create sintered samples containing 0%, 2%, 4% and 6% glass (by weight). Upon glass induction features like remnant polarization, saturation polarization, hysteresis losses and coercive field could be varied as a function of glass content. Such effects were observed to benefit derived applications like enhanced energy storage density ∼174 / 3 to ∼203 / 3 and pyroelectric coefficient 5.710−4 −2 −1 to 6.810−4 −2 −1 by incorporation of 4% glass. Additionally, BNT-BT-ST depolarization temperature decreased from 457K to 431K by addition of 4% glass content. Glass incorporation could systematically increases diffuse phase transition and relaxor behavior temperature range from 70 K to 81K and 20K to 34 K, respectively when 6% and 4% glass content is added which indicates addition of glass provides better temperature stability. The most promising feature was observed to be that of dielectric response tuning. It can be also used to control (to an extent) the dielectric behavior of the host ceramic. Dielectric permittivity and losses decreased from 1278 to 705 and 0.109 to 0.107 for 6% glass, at room temperature. However this reduction in dielectric constant and loss increases pyroelectric figures of merit (FOMs) for high voltage responsivity () high detectivity () and energy harvesting () from 0.018 to 0.037 2 −1, 5.89 to 8.85 −1/2 and 28.71 to 61.55 −3 −2, respectively for 4% added ceramic-glass at room temperature. Such findings can have huge implications in the field of tailoring ferroelectric response for application specific requirements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4929328.html;jsessionid=GbBX6J-FNYRTur_iyh66RsAT.x-aip-live-02?itemId=/content/aip/journal/adva/5/8/10.1063/1.4929328&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4929328&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4929328'
Right1,Right2,Right3,