Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4929399
1.
1.W. E. Milne, Phys. Rev. 35, 863 (1930).
http://dx.doi.org/10.1103/PhysRev.35.863
2.
2.P. O. Fröman and K. Larsson, J. Math. Phys. 43, 2169 (2002).
http://dx.doi.org/10.1063/1.1465098
3.
3.J. A. Wheeler, Phys. Rev. 52, 1123 (1937).
http://dx.doi.org/10.1103/PhysRev.52.1123
4.
4.M. J. Korsch and H. Laurent, J. Phys. B: At. Mot. Phys. 14, 4213 (1981).
http://dx.doi.org/10.1088/0022-3700/14/22/008
5.
5.F. Calogero and D. G. Rayenhall, Nuovo Cimento 32, 1755 (1964).
http://dx.doi.org/10.1007/BF02732808
6.
6.M. J. Seaton and G. Peach, Proc. Phys. Soc. 79, 1296 (1962).
http://dx.doi.org/10.1088/0370-1328/79/6/127
7.
7.D. F. Mayers and D. M. Turner, J. Comput. Phys. 55, 397 (1984).
http://dx.doi.org/10.1016/0021-9991(84)90029-9
8.
8.A. Bar-Shalom and M. Klapisch, J. Oreg, Comput. Phys. Commun. 93, 21 (1996).
http://dx.doi.org/10.1016/0010-4655(95)00100-X
9.
9.T. Utsumi and J. Koga, Comput. Phys. Commun. 148, 267 (2002).
http://dx.doi.org/10.1016/S0010-4655(02)00557-X
10.
10.G. Rawitscher, Comput. Phys. Commun. 191, 33 (2015).
http://dx.doi.org/10.1016/j.cpc.2015.01.014
11.
11.C.F. Fischer, T. Brage, and P. Jönsson, Computational Atomic Structure: An MCHF Approach (Institute of Physics, Bristol, 1997).
12.
12.A. Burgess and V. J. Sheorey, J. Phys. B 7, 2403 (1974).
http://dx.doi.org/10.1088/0022-3700/7/17/026
13.
13.B. Wilson, C. Iglesias, and M. Chen, J. Quant. Spectrosc. Radiat. Transf. 81, 499 (2003).
http://dx.doi.org/10.1016/S0022-4073(03)00099-2
14.
14.B. Ritchie and A. K. Bhatia, Phys. Rev. E 69, 035402 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.035402
15.
15.J. L. Dehmer and U. Fano, Phys. Rev. A 2, 304 (1970).
http://dx.doi.org/10.1103/PhysRevA.2.304
16.
16.F. Calogero, Variable Phase Approach to Potential Scattering (Academic, New York, 1967).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4929399
Loading
/content/aip/journal/adva/5/8/10.1063/1.4929399
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4929399
2015-08-18
2016-09-26

Abstract

The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4929399.html;jsessionid=gTmzkTuNeEIvpi28QABMgm6X.x-aip-live-02?itemId=/content/aip/journal/adva/5/8/10.1063/1.4929399&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4929399&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4929399'
Right1,Right2,Right3,