Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. L. G. Joy, G. C. Scott, and R. M. Henkelman, Magn. Reson. Imaging 7, 89-94 (1989).
2.G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Henkelman, IEEE Trans. Med. Imaging 10, 362-374 (1991).
3.E. J. Woo and J. K. Seo, Physiol. Meas. 29, R1-R26 (2008).
4.S. Grimnes and O. G. Martinsen, Bioimpedance and Bioelectricity Basics (Academic, London, 2000), pp. 102-119.
5.A. C. Guyton and J. E. Hall, Textbook of medical physiology (11th edition) (Elsevier, Philadelphia, 2006), pp. 291-306.
6.D. Haemmerich, S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster, Physiol. Meas. 24, 251-260 (2003).
7.H. J. Kim, Y. T. Kim, A. S. Minhas, W. C. Jeong, E. J. Woo, J. K. Seo, and O. J. Kwon, IEEE Trans. Med. Imaging 28, 1681-1687 (2009).
8.T. I. Oh, W. C. Jeong, A. McEwan, H. M. Park, H. J. Kim, O. I. Kwon, and E. J. Woo, J. Magn. Reson. Imaging 38, 189-197 (2013).
9.Y. Zhang, W. van Drongelen, and B. He, Appl. Phys. Lett. 89, 223903 (2006).
10.M. Chauhan, W. C. Jeong, H. J. Kim, O. I. Kwon, and E. J. Woo, Int. J. Hyperthermia 29, 643-652 (2013).
11.R. J. Sadleir, T. D. Vannorsdall, D. J. Schretlen, and B. Gordon, Neuroimage 51, 1310-1318 (2010).
12.X. F. Wei and W. M. Grill, J. Neural. Eng. 2, 139-147 (2005).
13.R. J. Sadleir, S. Z. K. Sajib, H. J. Kim, O. I. Kwon, and E. J. Woo, J. Magn. Reson. 230, 40-49 (2013).
14.C. C. Mclntyre, S. Mori, D. L. Sherman, N. V. Thakor, and J. L. Vitek, Clin. Neurophysiol. 115, 589-595 (2004).
15.C. Schmidt and U. van Rienen, IEEE Trans. Biomed. Eng. 59, 1583-1592 (2012).
16.M. Kranjc, F. Bajd, I. Sersa, and D. Miklavcic, IEEE Trans. Med. Imaging 30, 1771-1778 (2011).
17.Z. J. Meng, S. Z. K. Sajib, M. Chauhan, R. J. Sadleir, H. J. Kim, O. I. Kwon, and E. J. Woo, Comput. Math. Meth. Med. 2013, 704829 (2013).
18.D. H. Kim, M. Chauhan, M. Kim, W. C. Jeong, H. J. Kim, I. Sersa, O. I. Kwon, and E. J. Woo, IEEE Trans. Med. Imaging 34, 507-513 (2015).
19.D. S. Tuch, V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau, Proc. Natl. Acad. Sci. 98, 11697 (2001).
20.O. I. Kwon, W. C. Jeong, S. Z. K. Sajib, H. J. Kim, and E. J. Woo, Phys. Med. Biol. 59, 2955-2974 (2014).
21.M. Rullman, A. Anwander, M. Dannhauer, S. K. Waefield, F. H. Fuffy, and C. H. Wolters, NeuroImage 44, 399-410 (2009).
22.H. J. Kim, S. Z. K. Sajib, W. C. Jeong, M. N. Kim, O. I. Kwon, and E. J. Woo, Inverse Probl. 29, 075001 (2013).
23.P. Kochunov, D. C. Glahn, J. Lancaster, P. M. Thompson, V. Kochunov, B. Rogers, P. Fox, J. Blangero, and D. E. Williamson, NeuroImage 58, 41-49 (2011).
24.M. Sekino, K. Yamaguchi, N. Iriguchi, and S. Ueno, J. Appl. Phys. 93, 6730 (2003).
25.E. Degimenci and B. M. Eyuboglu, Phys. Med. Biol. 52, 7229-7242 (2007).
26.T. I. Oh, Y. T. Kim, A. Minhas, J. K. Seo, O. I. Kwon, and E. J. Woo, Phys. Med. Biol. 56, 2265-2277 (2011).
27.T. C. Miranda, A. Mekonnen, R. Salvador, and G. Ruffini, Neuroimage 70, 48-58 (2013).

Data & Media loading...


Article metrics loading...



Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR)-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd