Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4929474
1.
1.W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
2.
2.F. Garcia, J. Sort, B. Rodmacq, S. Auffret, and B. Dieny, Appl. Phys. Lett. 83, 3537 (2003).
http://dx.doi.org/10.1063/1.1619562
3.
3.Q. Wu, W. He, H. Liu, Y. Liu, J. Cai, and Z. Cheng, J. Appl. Phys. 113, 033901 (2013).
http://dx.doi.org/10.1063/1.4775837
4.
4.S. Chen, H. Zhao, G. Wang, Z. Zhang, B. Ma, and Q. Y. Jin, Thin Solid Films 534, 553 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.02.040
5.
5.S. K. Mishra, F. Radu, S. Valencia, D. Schmitz, E. Schierle, H. A. Dürr, and W. Eberhardt, Phys. Rev. B 81, 212404 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.212404
6.
6.K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, Phys. Rev. Lett. 79, 1130 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1130
7.
7.M. Gottwald, M. Hehn, F. Montaigne, D. Lacour, G. Lengaigne, S. Suire, and S. Mangin, J. Appl. Phys. 111, 083904 (2012).
http://dx.doi.org/10.1063/1.3703666
8.
8.S. Romer, M. A. Marioni, K. Thorwarth, N. R. Joshi, C. E. Corticelli, H. J. Hug, S. Oezer, M. Parlinska-Wojtan, and H. Rohrmann, Appl. Phys. Lett. 101, 222404 (2012).
http://dx.doi.org/10.1063/1.4767142
9.
9.C. Schubert, B. Hebler, H. Schletter, A. Liebig, M. Daniel, R. Abrudan, F. Radu, and M. Albrecht, Phys. Rev. B 87, 054415 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.054415
10.
10.F. Radu, R. Abrudan, I. Radu, D. Schmitz, and H. Zabel, Nat. Commun. 3, 715 (2012).
http://dx.doi.org/10.1038/ncomms1728
11.
11.S. Alebrand, M. Gottwald, M. Hehn, D. Steil, M. Cinchetti, D. Lacour, E. E. Fullerton, M. Aeschlimann, and S. Mangin, Appl. Phys. Lett. 101, 162408 (2012).
http://dx.doi.org/10.1063/1.4759109
12.
12.S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris, and E. E. Fullerton, Nat. Mater. 5, 210 (2006).
http://dx.doi.org/10.1038/nmat1595
13.
13.H. Song, K. Lee, J. Sohn, S. Yang, S. Parkin, C. You, and S. Shin, Appl. Phys. Lett. 102, 102401 (2013).
http://dx.doi.org/10.1063/1.4795013
14.
14.J. Liao, H. He, Z. Zhang, B. Ma, and Q. Y. Jin, J. Appl. Phys. 109, 023907 (2011).
http://dx.doi.org/10.1063/1.3536476
15.
15.M. H. Tang, Z. Zhang, Y. Zhu, B. Ma, and Q. Jin, Nano-Micro Lett. 6, 359 (2014).
http://dx.doi.org/10.1007/s40820-014-0009-1
16.
16.M. H. Tang, Z. Zhang, S. Tian, J. Wang, B. Ma, and Q. Y. Jin, Sci. Rep. 5, 10863 (2015).
http://dx.doi.org/10.1038/srep10863
17.
17.F. Radu and H. Zabel, Springer Tracts Mod. Phys. 227, 97-184 (2008).
http://dx.doi.org/10.1007/978-3-540-73462-8_3
18.
18.D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987).
http://dx.doi.org/10.1063/1.339367
19.
19.S. Akbulut, A. Akbulut, M. Özdemir, and F. Yildiz, J. Magn. Magn. Mater. 390, 137 (2015).
http://dx.doi.org/10.1016/j.jmmm.2015.04.061
20.
20.S. Yin, X. Li, X. Xu, J. Miao, and Y. Jiang, IEEE Trans. Mag. 47, 3129 (2011).
http://dx.doi.org/10.1109/TMAG.2011.2157310
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4929474
Loading
/content/aip/journal/adva/5/8/10.1063/1.4929474
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4929474
2015-08-19
2016-12-04

Abstract

With the demand for increasing storage density in spintronic applications, extensive work has been devoted to searching for perpendicular magnetic material systems with strong exchange bias effect. In this study we have investigated the exchange bias effect in perpendicular magnetized heterostructures of [Co/Ni]/(Cu, Ta)/TbCo. An interlayer of 0.8 nm Cu is capable of achieving separate magnetization switching, showing a quite large exchange bias field over 2.9 kOe. With increasing the interlayer thickness, both the Co/Ni bias field and TbCo switching field decrease much more rapidly for the samples with a Ta interlayer as compared to the Cu case, due to the better coverage ability of the amorphous nature. The influence of layer thickness and composition of the FM and FI layers has also been investigated and the variation tendencies are well interpreted.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4929474.html;jsessionid=82N4FtWXHpqZm0cLUhGPKdEh.x-aip-live-02?itemId=/content/aip/journal/adva/5/8/10.1063/1.4929474&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4929474&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4929474'
Right1,Right2,Right3,