Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
2.F. Garcia, J. Sort, B. Rodmacq, S. Auffret, and B. Dieny, Appl. Phys. Lett. 83, 3537 (2003).
3.Q. Wu, W. He, H. Liu, Y. Liu, J. Cai, and Z. Cheng, J. Appl. Phys. 113, 033901 (2013).
4.S. Chen, H. Zhao, G. Wang, Z. Zhang, B. Ma, and Q. Y. Jin, Thin Solid Films 534, 553 (2013).
5.S. K. Mishra, F. Radu, S. Valencia, D. Schmitz, E. Schierle, H. A. Dürr, and W. Eberhardt, Phys. Rev. B 81, 212404 (2010).
6.K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, Phys. Rev. Lett. 79, 1130 (1997).
7.M. Gottwald, M. Hehn, F. Montaigne, D. Lacour, G. Lengaigne, S. Suire, and S. Mangin, J. Appl. Phys. 111, 083904 (2012).
8.S. Romer, M. A. Marioni, K. Thorwarth, N. R. Joshi, C. E. Corticelli, H. J. Hug, S. Oezer, M. Parlinska-Wojtan, and H. Rohrmann, Appl. Phys. Lett. 101, 222404 (2012).
9.C. Schubert, B. Hebler, H. Schletter, A. Liebig, M. Daniel, R. Abrudan, F. Radu, and M. Albrecht, Phys. Rev. B 87, 054415 (2013).
10.F. Radu, R. Abrudan, I. Radu, D. Schmitz, and H. Zabel, Nat. Commun. 3, 715 (2012).
11.S. Alebrand, M. Gottwald, M. Hehn, D. Steil, M. Cinchetti, D. Lacour, E. E. Fullerton, M. Aeschlimann, and S. Mangin, Appl. Phys. Lett. 101, 162408 (2012).
12.S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris, and E. E. Fullerton, Nat. Mater. 5, 210 (2006).
13.H. Song, K. Lee, J. Sohn, S. Yang, S. Parkin, C. You, and S. Shin, Appl. Phys. Lett. 102, 102401 (2013).
14.J. Liao, H. He, Z. Zhang, B. Ma, and Q. Y. Jin, J. Appl. Phys. 109, 023907 (2011).
15.M. H. Tang, Z. Zhang, Y. Zhu, B. Ma, and Q. Jin, Nano-Micro Lett. 6, 359 (2014).
16.M. H. Tang, Z. Zhang, S. Tian, J. Wang, B. Ma, and Q. Y. Jin, Sci. Rep. 5, 10863 (2015).
17.F. Radu and H. Zabel, Springer Tracts Mod. Phys. 227, 97-184 (2008).
18.D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987).
19.S. Akbulut, A. Akbulut, M. Özdemir, and F. Yildiz, J. Magn. Magn. Mater. 390, 137 (2015).
20.S. Yin, X. Li, X. Xu, J. Miao, and Y. Jiang, IEEE Trans. Mag. 47, 3129 (2011).

Data & Media loading...


Article metrics loading...



With the demand for increasing storage density in spintronic applications, extensive work has been devoted to searching for perpendicular magnetic material systems with strong exchange bias effect. In this study we have investigated the exchange bias effect in perpendicular magnetized heterostructures of [Co/Ni]/(Cu, Ta)/TbCo. An interlayer of 0.8 nm Cu is capable of achieving separate magnetization switching, showing a quite large exchange bias field over 2.9 kOe. With increasing the interlayer thickness, both the Co/Ni bias field and TbCo switching field decrease much more rapidly for the samples with a Ta interlayer as compared to the Cu case, due to the better coverage ability of the amorphous nature. The influence of layer thickness and composition of the FM and FI layers has also been investigated and the variation tendencies are well interpreted.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd