Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.V. I. Ovcharenko and E. G. Bagryanskaya, in Spin-Crossover Materials: Properties and Applications, edited by M. A. Halcrow (John Wiley & Sons, Ltd, Oxford, UK, 2013), Chapter 9.
2.E. V. Tretyakov, S. E. Tolstikov, A. O. Suvorova, A. V. Polushkin, G. V. Romanenko, A. S. Bogomyakov, S. L. Veber, M. V. Fedin, D. V. Stass, E. Reijerseet, W. Lubitz, E. M. Zueva, and V. I. Ovcharenko, Inorg. Chem. 51, 9385 (2012).
3.Spin crossover in transition metal compounds I, II, and III, edited by P. Gütlich and H. A. Goodwin (Topics in Current Chemistry, Springer, Berlin, 2004).
4.Spin-Crossover Materials: Properties and Applications, edited by M. A. Halcrow (John Wiley & Sons, Ltd, Oxford, UK, 2013).
5.Y. Ogawa, S. Koshihara, K. Koshino, T. Ogawa, C. Urano, and H. Takagi, Phys. Rev. Lett. 84, 3181 (2000).
6.H. J. Shepherd, S. Bonnet, P. Guionneau, S. Bedoui, G. Garbarino, W. Nicolazzi, A. Bousseksou, and G. Molnár, Phys. Rev. B 84, 144107 (2011).
7.A. Hauser, Top. Curr. Chem. 233, 49 (2004).
8.S. Cobo, D. Ostrowskii, S. Bonhommeau, G. Molnár, L. Salmon, K. Tanaka, and A. Bousseksou, J. Am. Chem. Soc. 130, 9019 (2008).
9.P. Gütlich, A. Hauser, and H. Spiering, Angew. Chem. Int. Ed. Engl. 33, 2024 (1994).
10.A. Bousseksou, G. Molnár, L. Salmon, and W. Nicolazzi, Chem. Soc. Rev. 40, 3313 (2011).
11.J. F. Létard, P. Guionneau, and L. Goux-Capes, Top. Curr. Chem. 235, 221 (2004).
12.M. V. Fedin, S. L. Veber, K. Yu. Maryunina, G. V. Romanenko, E. A. Suturina, N. P. Gritsan, R. Z. Sagdeev, V. I. Ovcharenko, and E. G. Bagryanskaya, J. Am. Chem. Soc. 132, 13886 (2010).
13.V. I. Ovcharenko, G. V. Romanenko, K. Yu. Maryunina, A. S. Bogomyakov, and E. V. Gorelik, Inorg. Chem. 47, 9537 (2008).
14.E. M. Zueva, E. R. Ryabykh, and An. M. Kuznetsov, Russ. Chem. Bull. 58, 1654 (2009).
15.A. V. Postnikov, A. V. Galakhov, and S. Blugel, Phase Trans. 78, 689 (2005).
16.J. M. Soler, E. Artacho, E. , J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys. Cond. Matt. 14, 2745 (2002); SIESTA web page (accessed May 18, 2015).
17.S. V. Streltsov, M. V. Petrova, V. A. Morozov, G. V. Romanenko, V. I. Anisimov, and N. N. Lukzen, Phys. Rev. B 87, 024425 (2013).
18.S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
19.B. Himmetoglu, R.M. Wentzcovitch, and M. Cococcioni, Phys. Rev. B 84, 115108 (2011).
20.C. Cao, S. Hill, and H.-P. Cheng, Phys. Rev. Lett. 100, 167206 (2008).
21.S. Gangopadhyay, A. E. Masunov, E. Poalelungi, and M. N. Leuenberger, J. Chem. Phys. 132, 244104 (2010).
22.S. Gangopadhyay, A. E. Masunov, E. Poalelungi, and M. N. Leuenberger, LNCS 5545, 151 (2009).
23.P. Rivero, C. Loschen, I. de P. R. Moreira, and F. Illas, J. Comput. Chem. 30, 2316 (2009).
24.P. Rivero, I. de P. R. Moreira, and F. Illas, Phys. Rev. B 81, 205123 (2010).
25.I. de P. R. Moreira, P. Rivero, and F. Illas, J. Chem. Phys. 134, 074709 (2011).
26.M. Schmitt, O. Janson, S. Golbs, M. Schmidt, W. Schnelle, J. Richter, and H. Rosner, Phys. Rev. B 89, 174403 (2014).
27.Y. Zhang and H. Jiang, J. Chem. Theory Comput. 7, 2795 (2011).
28.K. Nakamura, R. Arita, Y. Yoshimoto, and S. Tsuneyuki, Phys. Rev. B 74, 235113 (2006).
29.H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari, Phys. Rev. Lett. 97, 103001 (2006).
30.M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005).
31.V. I. Ovcharenko, K. Yu. Maryunina, S. V. Fokin, E. V. Tretyakov, G. V. Romanenko, and V. N. Ikorskii, Russ. Chem. Bull. 53, 2406 (2004).
32.P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009).
33.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
34.F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012).
35.K. Yamaguchi, H. Fukui, and T. Fueno, Chem. Lett. 15, 625 (1986).
36.J. B. Goodenough, Magnetism and the Chemical Bond (Interscience-Wiley, New York, 1963).
37.O. Kahn, Molecular Magnetism (VCH, Weinheim, Germany, 1993).
38.M. V. Fedin, E. G. Bagryanskaya, H. Matsuoka, S. Yamauchi, S. L. Veber, K. Yu. Maryunina, E. V. Tretyakov, V. I. Ovcharenko, and R. Z. Sagdeev, J. Am. Chem. Soc. 134, 16319 (2012).
39.J. Winterlik, G. H. Fecher, C. A. Jenkins, C. Felser, C. Mühle, K. Doll, M. Jansen, L. M. Sandratskii, and J. Kübler, Phys. Rev. Lett. 102, 016401 (2009).

Data & Media loading...


Article metrics loading...



Family of “breathing crystals” is the polymer-chain complexes of Cu(hfac) with nitroxides. The polymer chains consist of one-, two- or three-spin clusters. The “breathing crystals” experience simultaneous magnetic and Jahn-Teller type structural phase transitions with change of total cluster spin and drastic change of bond lengths (ca. 10-12%). For the first time the intra-cluster magnetic couplings in ”breathing crystals” have been calculated both by band structure methods GGA + U and hybrid DFT (B3LYP and PBE0) for the isolated exchange clusters. The temperature dependence of the magnetic coupling constant was calculated for two polymer-chain compounds of the “breathing crystal” family - CHCuFNO with the chains containing two-spin clusters and CHCuFNO with the chains of alternating three-spin clusters and one-spin sites. It was found that adding a Hubbard-like parameter not only to the copper 3d electrons but also to the oxygen 2p electrons (GGA + U + U approach) results in an improved description of exchange coupling in the “breathing crystal” compounds. At the same time treatment of the isolated clusters by a large basis hybrid DFT with high computational cost provides a similar quality fit of the experimental magneto-chemical data as that for the GGA + U + U band structure calculation scheme. Our calculations also showed that in spite of the abrupt transformation of the magnetic coupling constant under the phase transition, the band gap in the “breathing crystals” remains about the same value with temperature decrease.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd