Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4929574
1.
1.Z. L. Li, J. Phys. A: Math. Theor. 41, 145206 (2008).
http://dx.doi.org/10.1088/1751-8113/41/14/145206
2.
2.Z. L. Li, Applied Mathematics and Computation 217, 1398 (2010).
http://dx.doi.org/10.1016/j.amc.2009.05.034
3.
3.J. R. Qing, S. M. Chen, D. W. Li, and B. Liang, Chin. Phys. B 21, 089401 (2012).
http://dx.doi.org/10.1088/1674-1056/21/8/089401
4.
4.P. Liu, Z. L. Li, and S. Y. Lou, Applied Mathematics and Mechanics 31, 1383 (2010).
http://dx.doi.org/10.1007/s10483-010-1370-6
5.
5.James C. McWilliams, Fundamentals of Geophysical Fluid Dynamics (Cambridge University Press, London, 2006).
6.
6.P. Liu and Z. L. Li, Chinese Physics B 22, 050204 (2013).
http://dx.doi.org/10.1088/1674-1056/22/5/050204
7.
7.J. W. Rottman and F. Einaudi, Journal of the Atmospheric Sciences 50, 2116 (1993).
http://dx.doi.org/10.1175/1520-0469(1993)050<2116:SWITA>2.0.CO;2
8.
8.P. Olver, Applications of Lie Group to Differential Equations (Spring-Verlag, New York, 1986).
9.
9.P. Liu, J. J. Yang, and B. Ren, Chin. Phys. Lett. 30, 100201 (2013).
http://dx.doi.org/10.1088/0256-307X/30/10/100201
10.
10.P. Liu, B. Q. Zeng, and B. Ren, Commun. Theor. Phys. 63, 413 (2015).
http://dx.doi.org/10.1088/0253-6102/63/4/413
11.
11.G. W. Bluman and S. Kumei, Symmetries and Differential Equations (Spring-Verlag, New York, 1989).
12.
12.X. N. Gao, S. Y. Lou, and X. Y. Tang, J. High Energy Phys. 5, 029 (2013).
13.
13.P. Liu, B. Li, and J.R. Yang, Central European Journal of Physics 12, 541 (2014).
14.
14.P. Liu, B. Q. Zeng, J. R. Yang, and B. Ren, Chin. Phys. B 24, 010202 (2015).
http://dx.doi.org/10.1088/1674-1056/24/1/010202
15.
15.W. X. Ma and T. C. Xia, Physica Scripta 87, 055003 (2013).
http://dx.doi.org/10.1088/0031-8949/87/05/055003
16.
16.Z. J. Qiao, Commun. Math. Phys. 239, 309 (2003).
http://dx.doi.org/10.1007/s00220-003-0880-y
17.
17.B. Ren, J. Lin, and J. Yu, Aip Advances 3, 042129 (2013).
http://dx.doi.org/10.1063/1.4802969
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4929574
Loading
/content/aip/journal/adva/5/8/10.1063/1.4929574
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4929574
2015-08-21
2016-09-29

Abstract

The symmetry reduction equations, similarity solutions, sub-groups and exact solutions of the (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations with viscosity (INHBV equations), which describe the atmospheric gravity waves, are researched in this paper. Calculation on symmetry shows that the equations are invariant under the Galilean transformations, scaling transformations, rotational transformations and space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+1)-dimensional INHBV equations are proposed. Traveling wave solutions of the INHBV equations are demonstrated by means of symmetry method. The evolutions on the wind velocities and temperature perturbation are demonstrated by figures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4929574.html;jsessionid=DSEWqUTomlOlTaVAm5j0Ky9Y.x-aip-live-02?itemId=/content/aip/journal/adva/5/8/10.1063/1.4929574&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4929574&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4929574'
Right1,Right2,Right3,