Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4929577
1.
1.D. Adler, M. Shur, M. Silver, and S. Ovshinsky, J. Appl. Phys 51, 103 (1980).
2.
2.M. Chen, K. Rubin, and R. Barton, Appl. Phys. Letter 49, 502 (1986).
http://dx.doi.org/10.1063/1.97617
3.
3.N Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M Takao, J. Appl. Phys 69, 2849 (1991).
http://dx.doi.org/10.1063/1.348620
4.
4.A. Jongenelis, W. E. Spiekman, and B. Jacobs, J. Appl. Physics 78, 4906 (1995).
http://dx.doi.org/10.1063/1.359779
5.
5.J. Coombs, A. Jongenelis, W. E. Spiekman, and B. Jacobs, J. Appl. Physics 78, 4918 (1995).
http://dx.doi.org/10.1063/1.359780
6.
6.J. Solis, C. Alfonso, S. Hyde, N. Barry, and P. French, Phys. Rev. Letter 76, 2519 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2519
7.
7.J. Keirsse et al., J. Non-Cryst. Solids 326–327, 430 (2003).
http://dx.doi.org/10.1016/S0022-3093(03)00434-4
8.
8.B. Bureau et al., J. Non-Cryst. Solids 345(346), 276 (2004).
http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.096
9.
9.A. Greer, Lindsay, and N. Mathur, Nature 437, 1246 (2005).
http://dx.doi.org/10.1038/4371246a
10.
10.P. K. Dwivedi et al., AIP conf Peoc. 1349, 555 (2011).
http://dx.doi.org/10.1063/1.3605979
11.
11.I. Think and K. Tanaka, Phys. Rev. B 39, 1270 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.1270
12.
12.S. K. Srivastava, P. K. Dwivedi, and A. Kumar, Physica B 183, 409 (1993).
http://dx.doi.org/10.1016/0921-4526(93)90133-Q
13.
13.Z. Wang, C. Tu, Y. Li, and Q. Chen, J. Non-Cryst. Solids 191, 132 (1995).
http://dx.doi.org/10.1016/0022-3093(95)00249-9
14.
14.R. Chander and R. Thangaraj, Chalcogenide Letters 5, 229 (2008).
15.
15.V. Vassilev, T. Hristova-Vasileva, and L. Aljihmani, Chalcogenide Letters 5, 39 (2008).
16.
16.A. Dahshan and K. A. Aly, Acta Mater. 56, 4869 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.06.001
17.
17.K. A. Aly, A. A. Othman, and A. M. Abousehly, J. Alloys Compd. 467, 417 (2009).
http://dx.doi.org/10.1016/j.jallcom.2007.12.009
18.
18.A. K. Singh, N. Mehta, and K. Singh, Philosophical Magazine Letters 90, 201 (2010).
http://dx.doi.org/10.1080/09500830903571376
19.
19.S. Kumar, K. Singh, and N. Mehta, Philosophical Magazine Letters 90, 547 (2010).
http://dx.doi.org/10.1080/09500831003800871
20.
20.S. Kumar and K. Singh, Thermochimica Acta 528, 32 (2012).
http://dx.doi.org/10.1016/j.tca.2011.11.005
21.
21.S. Kumar and K. Singh, Physica B 406, 1519 (2011).
http://dx.doi.org/10.1016/j.physb.2011.01.060
22.
22.S. Kumar and K. Singh, J. Material Science 47, 3949 (2012).
http://dx.doi.org/10.1007/s10853-011-6244-7
23.
23.K. Sedeek et al., Materials Chemistry and Physics 85, 20 (2004).
http://dx.doi.org/10.1016/j.matchemphys.2003.11.035
24.
24.S. Gautam et al., Journal of Non-Crystalline Solids 353, 1315 (2007).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.09.066
25.
25.N. A. Hegab et al., Journal of Alloys and Compounds 477, 925 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.11.129
26.
26.A. A. Shaheen et al., Current Applied Physics 11, 492 (2011).
http://dx.doi.org/10.1016/j.cap.2010.08.034
27.
27.A. Sharma, N. Mehta, and A. Kumar, J Mater Science 46, 4509 (2011).
http://dx.doi.org/10.1007/s10853-011-5344-8
28.
28.I. S. Yahia et al., Physica B 407, 2476 (2012).
http://dx.doi.org/10.1016/j.physb.2012.03.049
29.
29.I. S. Ram et al., Journal of Alloys and Compounds 552, 480 (2013).
http://dx.doi.org/10.1016/j.jallcom.2012.11.073
30.
30.A.N. Upadhyay et al., Materials Letters 136, 445 (2014).
http://dx.doi.org/10.1016/j.matlet.2014.08.092
31.
31.K. Funke et al., Solid State Ionics 154–155, 65 (2002).
http://dx.doi.org/10.1016/S0167-2738(02)00465-4
32.
32.G. Lucovsky, J. Non-Cryst. Solids 97–98, 155 (1987).
http://dx.doi.org/10.1016/0022-3093(87)90036-6
33.
33.R.M. Mehra, G. Kaur, and P.C. Mathur, J. Mater. Sci. 26, 3433 (1991).
http://dx.doi.org/10.1007/BF00557128
34.
34.K. Shimakawa and S. Nitta, Phys. Rev. B 17, 3950 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.3950
35.
35.N. Afifiy, Physica B 179, 48 (1992).
http://dx.doi.org/10.1016/0921-4526(92)90619-4
36.
36.R.K. Shukla, S. Swarup, A. Kumar, and A.N. Nigam, Semicond Sci Technol 4, 68 (1989).
http://dx.doi.org/10.1088/0268-1242/4/8/012
37.
37.S. Murugavel and M. Upadhyay, Journal of the Indian Institute of Science 91:2, 303 (2011).
38.
38.A. K. Jonscher, Nature 267, 673 (1977).
http://dx.doi.org/10.1038/267673a0
39.
39.N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1970).
40.
40.N. F. Mott and E. A. Davis, Philosophical Magzine 22, 903 (1970).
http://dx.doi.org/10.1080/14786437008221061
41.
41.M. A. M. Khan et al., Material Research Bulletin 45, 727 (2010).
http://dx.doi.org/10.1016/j.materresbull.2010.02.011
42.
42.K. L. Bhatia et al., Semicond. Sc. Technol 10, 65 (1995).
http://dx.doi.org/10.1088/0268-1242/10/1/011
43.
43.J. E. Baurrelle, J. Phys. Chem. Solids 30, 2657 (1969).
http://dx.doi.org/10.1016/0022-3697(69)90039-0
44.
44.H. Lee et al., Materials Science and Engineering B 119, 196 (2005).
http://dx.doi.org/10.1016/j.mseb.2005.02.060
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4929577
Loading
/content/aip/journal/adva/5/8/10.1063/1.4929577
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4929577
2015-08-21
2016-12-07

Abstract

Electrical conductivity of SeTeSnIn (x = 0, 3, 6 and 9) glassy systems was studied employing impedance spectroscopic technique in the frequency range 100 Hz to 1 MHz and in the temperature range 308-388 K. The DC conductivity (σ) at each temperature was evaluated from the low frequency plateau region for all the samples under investigation. The bulk conductivity for each sample was also evaluated from Nyquist impedance plots. The semicircle shape of Nyquist plot exhibit dipolar nature of samples. The activation energy for glassy, amorphous and crystalline region from the Arrhenius plot of the DC conductivity and bulk conductivity was evaluated. From the results it is found that activation energy varied from 0.091 to 0.194 eV in glassy, 0.686 to 0.002 eV in amorphous and 0.215 to 0.503 eV in crystalline region. The activation energy (ΔE) from DC conductivity and bulk conductivity found to be close in corresponding regions. The pre-exponential factor was also calculated for all three regions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4929577.html;jsessionid=TFmE6xN0m0zJOpIx2tReL2Rv.x-aip-live-02?itemId=/content/aip/journal/adva/5/8/10.1063/1.4929577&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4929577&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4929577'
Right1,Right2,Right3,