Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. H. Kikuchi and K. Kita, Appl. Phys. Lett. 105, 032106 (2014).
2.A. F. Basile, A. C. Ahyi, L. C. Feldman, J. R. Williams, and P. M. Mooney, J. Appl. Phys. 115, 034502 (2014).
3.P. Fiorenza, F. Giannazzo, A. Frazzetto, and F. Roccaforte, J. Appl. Phys. 112, 084501 (2012).
4.X. Shen, S. Dhar, and S. T. Pantelides, Appl. Phys. Lett. 106, 143504 (2015).
5.P. Fiorenza, A. Frazzetto, A. Guarnera, M. Saggio, and F. Roccaforte, Appl. Phys. Lett. 105, 142108 (2014).
6.A. Chanthaphan, T. Hosoi, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 104, 122105 (2014).
7.J. A. Valle-Mayorga, A. Rahman, and H.A. Mantooth, IEEE Trans. Power Electron. 29, 2321 (2014).
8.C. M. Hsu and J. G. Hwu, Appl. Phys. Lett. 101, 253517 (2012).
9.A. Tselev, V. K. Sangwan, D. Jariwala, T. J. Marks, L. J. Lauhon, M. C. Hersam, and S. V. Kalinin, Appl. Phys. Lett. 103, 243105 (2013).
10.S. S. Suvanam, K. Gulbinas, M. Usman, M. K. Linnarson, D. M. Martin, J. Linnros, V. Grivickas, and A. Hallén, J. Appl. Phys. 117, 105309 (2015).
11.S. Alialy, Ş. Altındal, E. E. Tanrıkulu, and D. E. Yıldız, J. Appl. Phys. 116, 083709 (2014).
12.B. Ofrim, G. Brezeanu, F. Draghici, and I. Rusu, Mater. Sci. Forum 778-780, 1054 (2014).
13.H. J. Quah, W. F. Lim, S. C. Wimbush, Z. Lockman, and K. Y. Cheong, Electrochem. Solid-State Lett. 13, 396 (2010).
14.Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, IEEE Electron Device Lett. 21, 341 (2000).
15.X. Y. Yang, B. M. Lee, and V. Misra, Mater. Sci. Forum 778-780, 557 (2014).
16.J. H. Moon, K. Y. Cheong, D. I. Eom, H. K. Song, J. H. Yim, J. H. Lee, H. J. Na, W. Bahng, N. K. Kim, and H. J. Kim, Mater. Sci. Forum 556-557, 643 (2007).
17.Y. Zhao, K. Kita, and A. Toriumi, J. Appl. Phys. 105, 034103 (2009).
18.Y. Kim, S. Woo, H. Kim, J Lee, H Kim, H. Lee, and H Jeon, J. Mater. Res. 25, 1898 (2010).
19.X. Y. Yang, B. Lee, and V. Misra, IEEE Electron Device Lett. 36, 312 (2015).
20.Y. M. Lei, S. Munekiyo, T. Kawanago, K. Kakushima, K. Kataoka, H. Wakabayashi, K. Tsutsui, K. Natori, H. Iwai, M. Furuhashi, and N. Miura, “Wide Bandgap Power Devices and Applications (WiPDA),” in 2014 IEEE Workshop on, Knoxville, TN, America, 13-15 Oct. 2014 (IEEE), pp. 114116.
21.L. Lamagna, C. Wiemer, M. Perego, S. N. Volkos, S. Baldovino, D. Tsoutsou, S. Schamm-Chardon, P. E. Coulon, and M. Fanciulli, J. Appl. Phys. 108, 084108 (2010).
22.W. J. Cho, R. Kosugi, K. Fukuda, and K. Arai, Appl. Phys. Lett. 77, 1215 (2000).

Data & Media loading...


Article metrics loading...



In this work, we describe a rapid thermal annealing (RTA) process for the LaO/SiO/4H-SiC interface and investigate its effect on the material’s electrical properties. Our results indicate that the trap charge density and interface state density (D) are reduced as the RTA temperature increases due to the termination of residual carbon and dangling bonds. We demonstrate that the sample obtained after RTA at 500 °C has the highest breakdown electric field (E) (7 MV/cm) due to a decrease in the trap charge density and an improvement in the interfacial properties. However, when the RTA temperature reaches 600 °C or higher, a lower E value (1.2 MV/cm) is obtained due to leakage routes generated by the crystallization of LaO. Based on our results, we conclude that the ideal choice for the RTA temperature is 500 °C.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd