Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4929720
1.
1.R. H. Kikuchi and K. Kita, Appl. Phys. Lett. 105, 032106 (2014).
http://dx.doi.org/10.1063/1.4891166
2.
2.A. F. Basile, A. C. Ahyi, L. C. Feldman, J. R. Williams, and P. M. Mooney, J. Appl. Phys. 115, 034502 (2014).
http://dx.doi.org/10.1063/1.4861646
3.
3.P. Fiorenza, F. Giannazzo, A. Frazzetto, and F. Roccaforte, J. Appl. Phys. 112, 084501 (2012).
http://dx.doi.org/10.1063/1.4759354
4.
4.X. Shen, S. Dhar, and S. T. Pantelides, Appl. Phys. Lett. 106, 143504 (2015).
http://dx.doi.org/10.1063/1.4917528
5.
5.P. Fiorenza, A. Frazzetto, A. Guarnera, M. Saggio, and F. Roccaforte, Appl. Phys. Lett. 105, 142108 (2014).
http://dx.doi.org/10.1063/1.4898009
6.
6.A. Chanthaphan, T. Hosoi, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 104, 122105 (2014).
http://dx.doi.org/10.1063/1.4870047
7.
7.J. A. Valle-Mayorga, A. Rahman, and H.A. Mantooth, IEEE Trans. Power Electron. 29, 2321 (2014).
http://dx.doi.org/10.1109/TPEL.2013.2279251
8.
8.C. M. Hsu and J. G. Hwu, Appl. Phys. Lett. 101, 253517 (2012).
http://dx.doi.org/10.1063/1.4772986
9.
9.A. Tselev, V. K. Sangwan, D. Jariwala, T. J. Marks, L. J. Lauhon, M. C. Hersam, and S. V. Kalinin, Appl. Phys. Lett. 103, 243105 (2013).
http://dx.doi.org/10.1063/1.4847675
10.
10.S. S. Suvanam, K. Gulbinas, M. Usman, M. K. Linnarson, D. M. Martin, J. Linnros, V. Grivickas, and A. Hallén, J. Appl. Phys. 117, 105309 (2015).
http://dx.doi.org/10.1063/1.4914521
11.
11.S. Alialy, Ş. Altındal, E. E. Tanrıkulu, and D. E. Yıldız, J. Appl. Phys. 116, 083709 (2014).
http://dx.doi.org/10.1063/1.4893970
12.
12.B. Ofrim, G. Brezeanu, F. Draghici, and I. Rusu, Mater. Sci. Forum 778-780, 1054 (2014).
http://dx.doi.org/10.4028/www.scientific.net/MSF.778-780.1054
13.
13.H. J. Quah, W. F. Lim, S. C. Wimbush, Z. Lockman, and K. Y. Cheong, Electrochem. Solid-State Lett. 13, 396 (2010).
http://dx.doi.org/10.1149/1.3481926
14.
14.Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, IEEE Electron Device Lett. 21, 341 (2000).
http://dx.doi.org/10.1109/55.847374
15.
15.X. Y. Yang, B. M. Lee, and V. Misra, Mater. Sci. Forum 778-780, 557 (2014).
http://dx.doi.org/10.4028/www.scientific.net/MSF.778-780.557
16.
16.J. H. Moon, K. Y. Cheong, D. I. Eom, H. K. Song, J. H. Yim, J. H. Lee, H. J. Na, W. Bahng, N. K. Kim, and H. J. Kim, Mater. Sci. Forum 556-557, 643 (2007).
http://dx.doi.org/10.4028/www.scientific.net/MSF.556-557.643
17.
17.Y. Zhao, K. Kita, and A. Toriumi, J. Appl. Phys. 105, 034103 (2009).
http://dx.doi.org/10.1063/1.3073946
18.
18.Y. Kim, S. Woo, H. Kim, J Lee, H Kim, H. Lee, and H Jeon, J. Mater. Res. 25, 1898 (2010).
http://dx.doi.org/10.1557/JMR.2010.0245
19.
19.X. Y. Yang, B. Lee, and V. Misra, IEEE Electron Device Lett. 36, 312 (2015).
http://dx.doi.org/10.1109/LED.2015.2399891
20.
20.Y. M. Lei, S. Munekiyo, T. Kawanago, K. Kakushima, K. Kataoka, H. Wakabayashi, K. Tsutsui, K. Natori, H. Iwai, M. Furuhashi, and N. Miura, “Wide Bandgap Power Devices and Applications (WiPDA),” in 2014 IEEE Workshop on, Knoxville, TN, America, 13-15 Oct. 2014 (IEEE), pp. 114116.
21.
21.L. Lamagna, C. Wiemer, M. Perego, S. N. Volkos, S. Baldovino, D. Tsoutsou, S. Schamm-Chardon, P. E. Coulon, and M. Fanciulli, J. Appl. Phys. 108, 084108 (2010).
http://dx.doi.org/10.1063/1.3499258
22.
22.W. J. Cho, R. Kosugi, K. Fukuda, and K. Arai, Appl. Phys. Lett. 77, 1215 (2000).
http://dx.doi.org/10.1063/1.1289806
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4929720
Loading
/content/aip/journal/adva/5/8/10.1063/1.4929720
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4929720
2015-08-24
2016-12-07

Abstract

In this work, we describe a rapid thermal annealing (RTA) process for the LaO/SiO/4H-SiC interface and investigate its effect on the material’s electrical properties. Our results indicate that the trap charge density and interface state density (D) are reduced as the RTA temperature increases due to the termination of residual carbon and dangling bonds. We demonstrate that the sample obtained after RTA at 500 °C has the highest breakdown electric field (E) (7 MV/cm) due to a decrease in the trap charge density and an improvement in the interfacial properties. However, when the RTA temperature reaches 600 °C or higher, a lower E value (1.2 MV/cm) is obtained due to leakage routes generated by the crystallization of LaO. Based on our results, we conclude that the ideal choice for the RTA temperature is 500 °C.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4929720.html;jsessionid=SEJMKFOcQlG_X4zAKkAjXNyE.x-aip-live-03?itemId=/content/aip/journal/adva/5/8/10.1063/1.4929720&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4929720&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4929720'
Right1,Right2,Right3,