Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4929721
1.
1.B. K. Sinha and K. W. Winkler, Geophys. 64, 1890 (1999).
http://dx.doi.org/10.1190/1.1444695
2.
2.S. Catheline, J. L. Gennisson, and M. Fink, J. Acoust. Soc. Am. 114, 3087 (2003).
http://dx.doi.org/10.1121/1.1610457
3.
3.M. P. Sørensen, P. L. Christiansen, and P. S. Lomdahl, J. Acoust. Soc. Am. 76, 871 (1984).
http://dx.doi.org/10.1121/1.391312
4.
4.Y. Liu, V. K. Chillara, C. J. Lissenden, and J. L. Rose, J. Appl. Phys. 114, 114908 (2013).
http://dx.doi.org/10.1063/1.4821252
5.
5.K. H. Matlack, J. Y. Kim, L. J. Jacobs, and J. Qu, J. Appl. Phys. 109, 014905 (2011).
http://dx.doi.org/10.1063/1.3527959
6.
6.O. V. Rudenko, Phys. Usp. 50, 359 (2007).
http://dx.doi.org/10.1070/PU2007v050n04ABEH006236
7.
7.Nonlinear Waves in Solids, edited by A. Jeffrey and J. Engelbrecht (Springer- Verlag, Wien-New York, 1994).
8.
8.G. E. Dace, R. B. Thompson, L. J. H. Brasche, D. K. Rehbein, and O. Buck, in Review of Progress in Quantitative Nondestructive Evaluation (Plenum Press, New York, 1991), Vol. 10B, pp. 1685-1692.
9.
9.A. M. Samsonov, Strain Solitons in Solids and How to Construct Them (Chapman & Hall/CRC, Baca Raton, Florida, 2001).
10.
10.J. Wu, J. Wheatley, S. Putterman, and A. I. Rudnick, Phys. Rev. Lett. 59, 2744 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2744
11.
11.G. A. Nariboli, J. Math. Phys. Sci. 4, 64 (1970).
12.
12.T.W. Wright, in Proceedings of the IUTAM Symposium on Finite Elasticity, edited byD.E. Carlson and R.T. Shield (Martinus Nijhoff Publishers, The Hague, 1981), pp. 423-443.
13.
13.C. X. Xue, E. Pan, and S. Y. Zhang, Smart Mater. Struct. 20, 105010 (2011).
http://dx.doi.org/10.1088/0964-1726/20/10/105010
14.
14.T. W. Wright, Stud. Appl. Math. 72, 149 (1985).
15.
15.B. D. Coleman and D. C. Newman, Arch. Ration. Mech. Anal 109, 39 (1990).
http://dx.doi.org/10.1007/BF00377978
16.
16.H.-H. Dai and Y. Huo, Acta Mech. 157, 97 (2002).
http://dx.doi.org/10.1007/BF01182157
17.
17.D. H. Yong and R. J. LeVeque, SIAM J. Appl. Math. 63, 1539 (2003).
http://dx.doi.org/10.1137/S0036139902408151
18.
18.G. A. Maugin, Eur. Phys. J-Spec. Top. 147, 209 (2007).
http://dx.doi.org/10.1140/epjst/e2007-00210-0
19.
19.H.-H. Dai, S. Dai, and Y. Huo, Wave Motion 32, 93 (2000).
http://dx.doi.org/10.1016/S0165-2125(00)00029-9
20.
20.G. A. Maugin, Mech. Res. Commun. 38, 341 (2011).
http://dx.doi.org/10.1016/j.mechrescom.2011.04.009
21.
21.M. Destrade, P. M. Jordan, and G. Saccomandi, Europhys. Lett. 87, 48001 (2009).
http://dx.doi.org/10.1209/0295-5075/87/48001
22.
22.M. A. Hayes and G. Saccomandi, J. Elast. 59, 213 (2000).
http://dx.doi.org/10.1023/A:1011081920910
23.
23.M. A. Hayes and G. Saccomandi, Q. J. Mech. Appl. Math. 57, 379 (2004).
http://dx.doi.org/10.1093/qjmam/57.3.379
24.
24.M. Destrade and G. Saccomandi, Wave Motion 40, 251 (2004).
http://dx.doi.org/10.1016/j.wavemoti.2004.04.001
25.
25.M. Destrade and G. Saccomandi, Phys. Rev. E 72, 016620 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.016620
26.
26.E. A. Zabolotskaya, M. F. Hamilton, Y. A. Ilinskii, and G. D. Meegan, J. Acoust. Soc. Am. 116, 2807 (2004).
http://dx.doi.org/10.1121/1.1802533
27.
27.K. Rasolofosan, B. Zinszner, and P. A. Johnson, Revue de l’Institut Français du Pétrole 52, 585 (1997).
28.
28.A.V. Porubov, Amplification of Nonlinear Strain Waves in Solids (World Scientific, Singapore, 2003).
29.
29.W. Q. Chen and H.-H. Dai, Acta Mech. Solida Sin. 25, 530 (2012).
http://dx.doi.org/10.1016/S0894-9166(12)60047-0
30.
30.W. L. Zhang, J. Qian, and W. Q. Chen, Acta Mech. Sin. 28, 1133 (2012).
http://dx.doi.org/10.1007/s10409-012-0134-3
31.
31.Y. Huang, X. D. Shen, C. L. Zhang, and W. Q. Chen, Phys. Lett. A 378, 2285 (2014).
http://dx.doi.org/10.1016/j.physleta.2014.05.032
32.
32.Y. Xu and V. F. Nesterenko, J. Appl. Phys. 117, 114303 (2015).
http://dx.doi.org/10.1063/1.4914066
33.
33.H.-H Dai and X Peng, Wave Motion 48, 761 (2011).
http://dx.doi.org/10.1016/j.wavemoti.2011.04.007
34.
34.Y. Z. Wang, C. L. Zhang, H.-H. Dai, and W. Q. Chen, J. Sound Vib. 355, 188 (2015).
http://dx.doi.org/10.1016/j.jsv.2015.04.023
35.
35.M. Destrade, G. Saccomandi, and M. Vianello, J. Acoust. Soc. Am. 133, 1255 (2013).
http://dx.doi.org/10.1121/1.4776178
36.
36.M.F. Hamilton and C.L. Morfey, in Nonlinear Acoustics, edited by M. F. Hamilton and D. T. Blackstock (Academic, San Diego, 1999), pp. 41-63.
37.
37.S. Catheline, J. L. Gennisson, M. Tanter, and M. Fink, Phys. Rev. Lett. 91, 164301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.164301
38.
38.A. Jeffrey and T. Kawahara, Asymptotic Methods in Nonlinear Wave Theory (Pitman, Boston, 1982).
39.
39.S. D. Liu and S. K. Liu, Sci. China Ser. A. 35, 576 (1992).
40.
40.A. Jeffrey and S. Xu, Wave Motion 11, 559 (1989).
http://dx.doi.org/10.1016/0165-2125(89)90026-7
41.
41.R. S. Banerjee, Int. J. Theor. Phys. 32, 879 (1993).
http://dx.doi.org/10.1007/BF00671673
42.
42.R. S. Johnson, J. Fluid Mech. 42, 49 (1970).
http://dx.doi.org/10.1017/S0022112070001064
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4929721
Loading
/content/aip/journal/adva/5/8/10.1063/1.4929721
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4929721
2015-08-24
2016-09-30

Abstract

The present paper theoretically investigates kink and kink-like waves propagating in pre-stretched Mooney-Rivlin viscoelastic rods. In the constitutive modeling, the Cauchy stress tensor is assumed to consist of an elastic part and a dissipative part. The asymptotic method is adopted to simplify the nonlinear dynamic equations in the limit of finite-small amplitude and long wavelength. Using the reductive perturbation method, we further derive the well-known far-field equation (i.e. the KdV-Burgers equation), to which two kinds of explicit traveling wave solutions are presented. Examples are given to show the influences of pre-stretch and viscosity on the wave shape and wave velocity. It is shown that pre-stretch could be an effective method for modulating the two types of waves. In addition, such waves may be utilized to measure the viscosity coefficient of the material. The competition between the effects of pre-stretch and viscosity on the kink and kink-like waves is also revealed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4929721.html;jsessionid=V3HHTM1UTle-zAtm1OrwwY_X.x-aip-live-02?itemId=/content/aip/journal/adva/5/8/10.1063/1.4929721&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4929721&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4929721'
Right1,Right2,Right3,