Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/8/10.1063/1.4929773
1.
1.Eric de Borniol, P. Castelein, F. Guellec, J. Rothman, G. Vojetta, G. Destefanis, and M. Vuillermet, Proc. SPIE 8012, 801232 (2011).
http://dx.doi.org/10.1117/12.884466
2.
2.I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, P. Oakley, and J. Copley, Proc. SPIE 6940, 69402L (2008).
http://dx.doi.org/10.1117/12.780469
3.
3.J. Beck, M. Woodall, R. Scritchfield, M. Ohlson, L. Wood, P. Mitra, and J. Robinson, J. Electron. Mater. 37(9), 1334 (2008).
http://dx.doi.org/10.1007/s11664-008-0433-4
4.
4.F. Guellec, M. Tchagaspanian, E. Borniol, P. Castelein, A. Perez, and J. Rothman, Proc. SPIE 6940, 69402M (2008).
http://dx.doi.org/10.1117/12.779284
5.
5.F. Pistone, P. Tribolet, X. Lefoul, M. Zecri, S. Courtas, P. Jenouvrier, and J. Rothman, Proc. SPIE 7298, 729834 (2009).
http://dx.doi.org/10.1117/12.819829
6.
6.G. Perrais, S. Derelle, L. Mollard, J. P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, J. Electron. Mater. 38(8), 1790 (2009).
http://dx.doi.org/10.1007/s11664-009-0802-7
7.
7.S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, J. Electron. Mater. 37(12), 1764 (2008).
http://dx.doi.org/10.1007/s11664-008-0542-0
8.
8.Eric de Borniol, F. Guellec, J. Rothman, A. Perez, J. P. Zanatta, M. Tchagaspanian et al., Proc. SPIE 7660, 76603D (2010).
http://dx.doi.org/10.1117/12.850689
9.
9.O. Gravrand, G. Destefanis, S. Bisotto, N. Baier, J. Rothman, L. Mollard et al., J. Electron. Mater. 42(11), 3349 (2013).
http://dx.doi.org/10.1007/s11664-013-2803-9
10.
10.A. Singh, A. K. Shukla, and Ravinder Pal, IEEE Electron Dev. Lett. 36(4), 360 (2015).
http://dx.doi.org/10.1109/LED.2015.2400571
11.
11.G.M. Williams, D.A. Ramirez, M. Hayat, and A.S. Huntington, IEEE Trans. Electron Dev. 1(4), 99 (2013).
12.
12.A. Kerlain, G. Bonnouvrier, L. Rubaldo, G. Decaens et al., J. Electron. Mater. 41(10), 2943 (2012).
http://dx.doi.org/10.1007/s11664-012-2087-5
13.
13.F. Aqariden, J. Elsworth, J. Zhao, C.H. Grein, and S. Sivananthan, J. Electron. Mater. 41(10), 2700 (2012).
http://dx.doi.org/10.1007/s11664-012-2189-0
14.
14.J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, Proc. SPIE 5564, 44 (2004).
http://dx.doi.org/10.1117/12.565142
15.
15.M. B. Reine, J. W. Marciniec, K. K. Wong, T. Parodos, J. D. Mullarkey, P.A. Lamarre, S. P. Tobin et al., J. Electron. Mater. 37(9), 1376 (2008).
http://dx.doi.org/10.1007/s11664-008-0420-9
16.
16.M. A. Kinch, J. D. Beck, C. F. Wan, F. Ma, and J. Campbell, J. Electron. Mater. 33(6), 630 (2004).
http://dx.doi.org/10.1007/s11664-004-0058-1
17.
17.J. Beck, R. Scritchfield, B. Sullivan, J. Teherani, C. F. Wan, M. Kinch, M. Ohlson, M. Skokan, L. Wood, P. Mitra, M. Goodwin, and J. Robinson, J. Electron. Mater. 38(8), 1579 (2009).
http://dx.doi.org/10.1007/s11664-009-0684-8
18.
18.J. Abautret, J.P. Perez, A. Evirgen, F. Martinez, P. Christol et al., J. Appl. Phys. 113, 183716 (2013).
http://dx.doi.org/10.1063/1.4804956
19.
19.J. Beck, R. Scritchfield, B. Sullivan, J. Teherani, C.F. Wan, M. Kinch et al., J. Electron. Mater. 38(8), 1579 (2009).
http://dx.doi.org/10.1007/s11664-009-0684-8
20.
20.A. Singh, V. Srivastav, and R. Pal, Opt. Laser Technol. 43(7), 1358 (2011).
http://dx.doi.org/10.1016/j.optlastec.2011.03.009
21.
21.R Pal, A Malik, V Srivastava, B L Sharma, V R Balakrishnan, V Dhar, and H P Vyas, IEEE Trans. on Electron. Dev. 53(11), 2727 (2006).
http://dx.doi.org/10.1109/TED.2006.883817
22.
22.S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley and Sons, Inc., 2001), pp. 74120.
23.
23.G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, J. Electron. Mater. 36(8), 963 (2007).
http://dx.doi.org/10.1007/s11664-007-0147-z
24.
24.A. Ferron, J. Rothman, and O. Gravrand, J. Electron. Mater. 42(11), 3303 (2013).
http://dx.doi.org/10.1007/s11664-013-2733-6
25.
25.M. A. Kinch, Fundamentals of Infrared Detector Materials (SPIE Press, Bellingham, USA, 2007), pp. 61133.
26.
26.P. Capper and J. Garland, Mercury Cadmium Telluride Growth, Properties and Application (John Wiley and Sons Ltd., U.K, 2011), pp. 493511.
27.
27.D. Rosenfeld, V. Garber, and G. Bahir, J. Appl. Phys. 77(2), 925 (1995).
http://dx.doi.org/10.1063/1.359020
28.
28.J. Piotrowski, W. Gawron, Z. Orman, J. Pawluczyk et al., Proc. SPIE 7660, 766031 (2010).
http://dx.doi.org/10.1117/12.850331
29.
29.S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, Appl. Phys. Lett. 101, 151124 (2012).
http://dx.doi.org/10.1063/1.4757424
30.
30.W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, IEEE J. Quantum Electron. 49(2), 154 (2013).
http://dx.doi.org/10.1109/JQE.2012.2233462
31.
31.P.J. Ker, A.R. J. Marshall, A.B. Krysa, J.P. R. David, and C.H. Tan, IEEE J. Quantum Electron. 47(8), 1123 (2011).
http://dx.doi.org/10.1109/JQE.2011.2159194
32.
32.W. Shockley, Solid State Electron. 2(1), 35 (1961).
http://dx.doi.org/10.1016/0038-1101(61)90054-5
33.
33.R. J. McIntyre, IEEE Trans. Electron Dev. 46(8), 1623 (1999).
http://dx.doi.org/10.1109/16.777150
34.
34.J. Rothman, L. Mollard, S. Gout, L. Bonnefond, and J. Wlassow, J. Electron. Mater. 40(8), 1757 (2011).
http://dx.doi.org/10.1007/s11664-011-1679-9
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/8/10.1063/1.4929773
Loading
/content/aip/journal/adva/5/8/10.1063/1.4929773
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/8/10.1063/1.4929773
2015-08-25
2016-09-29

Abstract

Initial results on the MWIR e-APD detector arrays with 30 μm pitch fabricated on LPE grown compositionally graded p-HgCdTe epilayers are presented. High dynamic resistance times active area (RA) product 2 × 106 Ω-cm2, low dark current density 4 nA/cm2 and high gain 5500 at -8 V were achieved in the n+-υ-p+ HgCdTe e-APD at 80 K. LPE based HgCdTe e-APD development makes this technology amenable for adoption in the foundries established for the conventional HgCdTe photovoltaic detector arrays without any additional investment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/8/1.4929773.html;jsessionid=KOV9RdDliAqV9gmT-fgBP-jl.x-aip-live-06?itemId=/content/aip/journal/adva/5/8/10.1063/1.4929773&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/8/10.1063/1.4929773&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4929773'
Right1,Right2,Right3,