Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Chu, X. Pan, D. Zhang, Q. Wu, J. Peng, and W. Hai, “The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy,” Biomaterials 33, 7071-7083 (2012).
2.J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, “Photothermal Response of Human and Murine Cancer Cells to Multiwalled Carbon Nanotubes after Laser Irradiation,” Cancer Research 70, 9855-9864 (2010).
3.Y. Jaemoon, C. Jihye, B. Doyeon, K. Eunjung, L. Eun-Kyung, P. Huiyul, S. Jin-Suck, L. Kwangyeol, Y. Kyung-Hwa, K. Eun-Kyung, H. Yong-Min, and H. Seungjoo, “Convertible Organic Nanoparticles for Near-Infrared Photothermal Ablation of Cancer Cells,” Angewandte Chemie International Edition 50, 441-444 (2011).
4.P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Accounts of Chemical Research 41, 1578-1586 (2008).
5.S. Tang, X. Huang, and N. Zheng, “Silica coating improves the efficacy of Pd nanosheets for photothermal therapy of cancer cells using near infrared laser,” Chemical Communications 47, 3948-3950 (2011).
6.J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold Nanocages as Photothermal Transducers for Cancer Treatment,” Small 6, 811-817 (2010).
7.T. N. Lambert, N. L. Andrews, H. Gerung, T. J. Boyle, J. M. Oliver, B. S. Wilson, and S. M. Han, “Water-soluble germanium(0) nanocrystals: Cell recognition and near-infrared photothermal conversion properties,” Small 3, 691-699 (2007).
8.K. Strzalkowski, J. Zakrzewski, and M. Malinski, “Determination of the Exciton Binding Energy Using Photothermal and Photoluminescence Spectroscopy,” International Journal of Thermophysics 34, 691-700 (2013).
9.G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” Rsc Advances 3, 12826-12830 (2013).
10.A. Mohanta, V. Singh, and R. K. Thareja, “Photoluminescence from ZnO nanoparticles in vapor phase,” Journal of Applied Physics 104 (2008).
11.G. Xiong, U. Pal, and J. G. Serrano, “Correlations among size, defects, and photoluminescence in ZnO nanoparticles,” Journal of Applied Physics 101 (2007).
12.Z. Zhao, J. Zeng, Z. Ding, X. Wang, J. Hou, and Z. Zhang, “High pressure photoluminescence of CdZnSe quantum dots: Alloying effect,” Journal of Applied Physics 102 (2007).
13.N. Pradhan, D. Goorskey, J. Thessing, and X. G. Peng, “An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals,” Journal of the American Chemical Society 127, 17586-17587 (2005).
14.N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Letters 7, 312-317 (2007).
15.G. Jia, X. Wang, Q. Li, and J. Yao, “Bi-rich grow topological insulator Bi2Se3 nanodomains structures,” Superlattices and Microstructures 66, 33-38 (2014).
16.Y. Yan, Z.-M. Liao, X. Ke, G. Van Tendeloo, Q. Wang, D. Sun, W. Yao, S. Zhou, L. Zhang, H.-C. Wu, and D.-P. Yu, “Topological Surface State Enhanced Photothermoelectric Effect in Bi2Se3 Nanoribbons,” Nano letters 14, 4389-4394 (2014).
17.J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M. S. Dresselhaus, and Q. Xiong, “Raman Spectroscopy of Few-Quintuple Layer Topological Insulator Bi2Se3 Nanoplatelets,” Nano Letters 11, 2407-2414 (2011).
18.S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2/Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Advanced Materials 27, 2775-+ (2015).
19.F. D. Ott, L. L. Spiegel, D. J. Norris, and S. C. Erwin, “Microscopic Theory of Cation Exchange in CdSe Nanocrystals,” Physical Review Letters 113 (2014).
20.D. H. Son, S. M. Hughes, Y. D. Yin, and A. P. Alivisatos, “Cation exchange reactions-in ionic nanocrystals,” Science 306, 1009-1012 (2004).
21.P. H. C. Camargo, Y. H. Lee, U. Jeong, Z. Zou, and Y. Xia, “Cation exchange: A simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties,” Langmuir 23, 2985-2992 (2007).
22.S. Deka, K. Miszta, D. Dorfs, A. Genovese, G. Bertoni, and L. Manna, “Octapod-Shaped Colloidal Nanocrystals of Cadmium Chalcogenides via “One-Pot” Cation Exchange and Seeded Growth,” Nano Letters 10, 3770-3776 (2010).
23.E. Groeneveld, L. Witteman, M. Lefferts, X. Ke, S. Bals, G. Van Tendeloo, and C. d. M. Donega, “Tailoring ZnSe-CdSe Colloidal Quantum Dots via Cation Exchange: From Core/Shell to Alloy Nanocrystals,” Acs Nano 7, 7913-7930 (2013).
24.J. Zhang, S. Liu, J. Yu, and M. Jaroniec, “A simple cation exchange approach to Bi-doped ZnS hollow spheres with enhanced UV and visible-light photocatalytic H-2-production activity,” Journal of Materials Chemistry 21, 14655-14662 (2011).
25.G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Research 8, 1443-1453 (2015).
26.A. M. Smith and S. Nie, “Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands,” Journal of the American Chemical Society 130, 11278-+ (2008).
27.H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals,” Small 6, 2272-2280 (2010).
28.G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” Journal of Physical Chemistry C 111, 5846-5849 (2007).

Data & Media loading...


Article metrics loading...



Water-dispersed core/shell structure ZnSe/BiSe quantum dots were synthesized by ultrasonicwave-assisted cation exchange reaction. Only surface Zn ion can be replaced by Bi ion in ZnSe quantum dots, which lead to the ultrathin BiSe shell layer formed. It is significance to find to change the crystal of QDs due to the acting of ultrasonicwave. Cation exchange mechanism and excellent photothermal conversion properties are discussed in detail.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd