Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
2.M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, Nanotechnology 20, 332001 (2009).
3.A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, Progress in Quantum Electronics 34, 191 (2010).
4.S. Xu and Z. L. Wang, Nano Res. 4, 1013 (2011).
5.A. Zainelabdin, S. Zaman, G. Amin, O. Nur, and M. Willander, Nanoscale Res Lett. 5, 1442 (2010).
6.L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, and P. Angew, Chem. Int. Ed. 42, 3031 (2003).
7.D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, Appl. Phys. Lett. 85, 1601 (2004).
8.E. De la Rosa, S. Sepúlveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo, and M. Jose Yacaman, J. Phys. Chem. C 111, 8489 (2007).
9.A. Escobedo-Morales and U. Pal, Appl. Phys. Lett. 93, 193120 (2008).
10.Y. F. Chiang, S.M. Kuo, C.P. Liu, J.C.A. Huang, W.T. Yao, and Y. C. Wu, Materials Chemistry and Physics 148, 1113 (2014).
11.S. Anantachaisilp, S.M. Smith, C. Ton-That, T. Osotchan, R.A. Moon, and R. M. Phillips, J. Phys. Chem. C 118, 27150 (2014).
12.K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, J. Phys. Chem. B 110, 20865 (2006).
13.A. Simimol, N. T. Manikandanath, A.A. Anappara, P. Chowdhury, and C. H. Barshilia, J. Appl. Phys. 116, 074309 (2014).
14.G. C. Park, S.M. Hwang, J. H. Choi, Y. H. Kwon, H. K. Cho, S.-W. Kim, J.H. Lim, and J. Joo, Phys. Status Solidi A 210, 1552 (2013).
15.A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, Nanotechnology 18, 095702 (2007).
16.T. M. Børseth, B.G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, Appl. Phys. Lett. 89 (2006).
17.F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, Sci. Rep. 4, 5158 (2014).
18.N. H. Alvi, K. ul Hasan, O. Nur, and M. Willander, Nanoscale Res. Lett. 6, 130 (2011).
19.L. Vayssieres, Adv. Mater. 15, 464 (2003).
20.L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett. 7, 1231 (2005).
21.J. Song, S. Baek, and S. Lim, Physica B 403, 1960 (2008).
22.F. Liu, Y. H. Leung, A. B. Djurišić, A. M. C. Ng, W. K. Chan, K. L. Ng, K. S. Wong, C. Liao, K. Shih, and C. Surya, J. Phys. Chem. C 118, 22760 (2014).
23.K. S. Ranjith, R. Pandian, E. McGlynn, and R. T. R. Kumar, Cryst. Growth Des. 14, 2873 (2014).
24.S. Shi, J. Xu, X. Zhang, and L. Li, J. Appl. Phys. 109, 103508 (2011).
25.X. Liu, M. Afzaal, K. Ramasamy, P. O’Brien, and J. Akhtar, J. Am. Chem. Soc. 131, 15106 (2009).
26.G. Li, Y. Mao, L. Li, S. Feng, M. Wang, and X. Yao, Chem.Mater. 11, 1259 (1999).
27.M. Taguchi, S. Takami, T. Adschiri, T. Nakane, and T. Naka, CrystEngComm. 14, 8735 (2012).
28.B. P. Renee, L. F. Clark, and A. G. Brian, Langmuir 20, 5114 (2004).
29.S.-F. Wang, T.-Y. Tseng, Y.-R. Wang, C.-Y. Wang, H.-C. Lu, and W.-L. Shih, Int. J. Appl. Ceram. Technol. 5, 419 (2008).
30.K. Govender, S. D. Boyle, B. P. Kenway, and P. O’Brien, J. Mater . Chem 14, 2575 (2004).
31.S. Xu, C. Lao, B. Weintraub, and Z. L. Wang, J. Mater. Res. 23, 2072 (2008).
32.M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, and Y. Sun, Thin Solid Films 515, 8679 (2007).
33.A. Zainelabdin, S. Zaman, G. Amin, O. Nur, and M. Willander, Crystal Growth & Design 10, 3250 (2010).
34.C. Battistoni, J.L. Dormann, D. Fiorani, E. Paparazzo, and S. Viticoli, Solid State Commun. 39, 581 (1981).
35.B. Panigrahy, M. Aslam, and D. Bahadur, J. Phys. Chem. C 114, 11758 (2010).
36.H.W. Jeong, S. -Y. Choi, S. H. Hong, S. K. Lim, D. S. Han, A. Abdel-Wahab, and H. Park, J. Phys. Chem. C 118, 21331 (2014).
37.I. Shalish, H. Temkin, and V. Narayanamurti, Phys. Rev. B 69, 245401 (2004).
38.N. Pan, X. Wang, M. Li, F. Li, and J.G. Hou, J. Phys. Chem. C 111, 17265 (2007).
39.F. A. Kohan, G. Ceder, D. Morgan, and C. G. Van De Walle, Phys. Rev. B 61, 15019 (2000).
40.C. G. Van De Walle, Physica B 308–310, 899 (2001).

Data & Media loading...


Article metrics loading...



Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd