Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K.B.K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G.A.J. Amaratunga, and W.I. Milne, Nature 437, 968 (2005).
2.H.C. Miller, IEEE Transactions on Electrical Insulation 24, 765 (1989).
3.J.R. Harris, G.J. Caporaso, D. Blackfield, and Y.-J. Chen, Applied Physics Letters 91, 121504 (2007).
4.G.J. Caporaso, Y.-J. Chen, S. Sampayan, G. Akana, R. Anaya, D. Blackfield, J. Carroll, E. Cook, S. Falabella, G. Guethlein, J. Harris, S. Hawkins, B. Hickman, C. Holmes, A. Homer, S. Nelson, A. Paul, D. Pearson, B. Poole, R. Richardson, D. Sanders, K. Selenes, J. Sullivan, L. Wang, J. Watson, and J. Weir, “Status of the Dielectric Wall Accelerator,” in Proceedings of the 2009 Particle Accelerator Conference.
5.A.C. Keser, T.M. Antonsen, G.S. Nusinovich, D.G. Kashyn, and K.L. Jensen, Phys. Rev. ST Accel. Beams 16, 092001 (2013).
6.J.R. Harris, K.L. Ferguson, J.W. Lewellen, S.P. Niles, B. Rusnak, R.L. Swent, W.B. Colson, T.I. Smith, C.H. Boulware, T.L. Grimm, P.R. Cunningham, M.S. Curtin, D.C. Miccolis, D.J. Sox, and W.S. Graves, Physical Review Special Topics - Accelerators and Beams 14, 053501 (2011).
7.C.A. Spindt, I. Brodie, L. Humphrey, and E.R. Westerberg, J. Appl. Phys. 47, 5248 (1976).
8.M.A. Guillorn, A.V. Melechko, V.I. Merkulov, E.D. Ellis, C.L. Britton, M.L. Simpson, D.H. Lowndes, and L.R. Baylor, Applied Physics Letters 79, 3506 (2001).
9.C.A. Spindt, C.E. Holland, A. Rosengreen, and I. Brodie, IEEE Transactions on Electron Devices 38, 2355 (1991).
10.J.R. Harris, K.L. Jensen, and D. A. Shiffler, “Modelling Field Emitter Arrays using Line Charge Distributions,” Journal of Physics D: Applied Physics (2015, accepted for publication).
11.H. Kosmahl, IEEE Transactions on Electron Devices 38, 1534 (1991).
12.T. Utsumi, IEEE Trans. Electron Devices 38, 2276 (1991).
13.D.A. Shiffler, J. Luginsland, M. Ruebush, M. Lacour, K. Golby, K. Cartwright, M. Haworth, and T. Spencer, IEEE Trans. Plas. Sci. 32, 1262 (2004).
14.W.I. Milne, K.B.K. Teo, E. Minoux, O. Groening, L. Gangloff, L. Hudanski, J.-P. Schnell, D. Dieumegard, F. Peauger, I.Y.Y. Bu, M.S. Bell, P. Legagneux, G. Hasko, and G.A.J. Amaratunga, Journal of Vacuum Science & Technology: Part B-Microelectronics & Nanometer Structures 24, 345 (2006).
15.E. Minoux, O. Groening, K.B.K. Teo, S.H. Dalal, L. Gangloff, J.-P. Schnell, L. Hudanski, I.Y.Y. Bu, P. Vincent, P. Legagneux, G.A.J. Amaratunga, and W.I. Milne, Nano Letters 5, 2135 (2005).
16.W. Tang, D. Shiffler, and K.L. Cartwright, Journal of Applied Physics 110, 034905 (2011).
17.W. Tang, D. Shiffler, K. Golby, M. LaCour, and T. Knowles, Journal of Vacuum Science and Technology B 30, 061803 (2012).
18.L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, Applied Physics Letters 76, 2071 (2000).
19.J.S. Suh, K.S. Jeong, J.S. Lee, and I. Han, Applied Physics Letters 80, 2393 (2002).
20.G. Chen, W. Wang, J. Peng, C. He, S. Deng, N. Xu, and Z. Li, Physical Review B 76, 195412 (2007).
21.R.G. Forbes, J. Appl. Phys. 111, 096102 (2012).
22.X.Q. Wang, M. Wang, Z.H. Li, Y.B. Xu, and P.M. He, Ultramicroscopy 102, 181-187 (2005).
23.G.S. Bocharov and A.V. Eletskii, Technical Physics 50, 944 (2005).
24.R.C. Smith and S.R.P. Silva, Applied Physics Letters 94, 133104 (2009).
25.W. Tang, D. Shiffler, K. Golby, M. LaCour, and T. Knowles, Journal of Vacuum Science & Technology B 32, 052202 (2014).
26.W. Tang, K. Golby, M. LaCour, and T. Knowles, IEEE Trans. Plas. Sci. 42, 2580 (2014).
27.J.R. Harris, K.L. Jensen, D.A. Shiffler, and J.J. Petillo, Applied Physics Letters 106, 201603 (2015).
28.K.L. Jensen, D.A. Shiffler, I.M. Rittersdorf, J.L. Lebowitz, J.R. Harris, Y.Y. Lau, J.J. Petillo, W. Tang, and J.W. Luginsland, Journal of Applied Physics 117, 194902 (2015).
29. Assuming we are operating at spacings that are comparable to the emitter height.
30.K. L. Jensen, D. A. Shiffler, J. J. Petillo, Z. Pan, and J. W. Luginsland, Physical Review Special Topics - Accelerators and Beams 17, 043402 (2014).
31.K.L. Jensen, in Wiley Encyclopedia of Electrical and Electronics Engineering, edited byJ.G. Webster (John Wiley & Sons, Inc, 2014).
32.O. Gröning, O.M. Küttel, Ch. Emmenegger, P. Gröning, and L. Schapbach, Journal of Vacuum Science and Technology B 18, 665 (2000).
33.This quantity is often referred to as the transconductance in gated field emitters, in which the change in applied field is due to a change in the gate voltage rather than the anode-cathode field considered here. See, J.P. Calame, H.F. Gray, and J.L. Shaw, J. Appl. Phys. 73, 1485 (1993).
34. The effect in 2-dimensional arrays can be seen in Ref. 1 in the curves labeled “1” for the square and triangular arrays. This curve of β(b) included only the central emitter and the nearest neighbors, and while not completely accurate due to the use of the same fitting constants for both the inboard and outboard emitters, it does replicate the minimum observed in the 1-dimensional arrays.
35.J.-M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kem, and A. Châtelain, Advanced Materials 13, 185 (2001).<184::AID-ADMA184>3.0.CO;2-I
36.Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, and C.H. Sow, Nanotechnology 16, 88-92 (2005).
37.D.A. Shiffler, W. Tang, K.L. Jensen, K. Golby, M. LaCour, J.J. Petillo, and J.R. Harris, “Effective Field Enhancement Factor and the Influence of Emitted Space Charge,” Journal of Applied Physics (2015, accepted for publication).

Data & Media loading...


Article metrics loading...



In ungated field emitter arrays, the field enhancement factor of each emitter tip is reduced below the value it would have in isolation due to the presence of adjacent emitters, an effect known as shielding or screening. Reducing the distance between emitters increases the density of emission sites, but also reduces the emission per site, leading to the existence of an optimal spacing that maximizes the array current. Most researchers have identified that this optimal spacing is comparable to the emitter height , although there is disagreement about the exact optimization. Here, we develop a procedure to determine the dependence of this optimal spacing on the applied electric field. It is shown that the nature of this dependence is governed by the shape of the () curve, and that for typical curves, the optimal value of the emitter spacing decreases as the applied field increases.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd