Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. S. Gui, N. Mecking, X. Zhou, G. Williams, and C. M. Hu, Phys. Rev. Lett. 98, 107602 (2007).
2.Y. S. Gui, N. Mecking, A. Wirthmann, L. H. Bai, and C. M. Hu, Appl. Phys. Lett. 91, 082503 (2007).
3.N. Mecking, Y. Gui, and C. M. Hu, Phys. Rev. B 76, 224430 (2007).
4.H. J. Juretschke, J. Appl. Phys. 31, 1401 (1960).
5.X. Hui, A. Wirthmann, Y. S. Gui, Y. Tian, X. F. Jin, Z. H. Chen, S. C. Shen, and C. M. Hu, Appl. Phys. Lett. 93, 232502 (2008).
6.H. Chen, X. Fan, W. Wang, H. Zhou, Y. S. Gui, C. M. Hu, and D. Xue, Appl. Phys. Lett. 102, 202410 (2013).
7.H. Chen, X. Fan, H. Zhou, W. Wang, Y. S. Gui, C. M. Hu, and D. Xue, J. Appl. Phys. 113, 17C732 (2013).
8.M. Goto, H. Hata, A. Yamaguchi, Y. Nakatani, T. Yamaoka, and Y. Nozaki, J. Appl. Phys. 109, 07D306 (2011).
9.Y. S. Gui, A. Wirthmann, and C. M. Hu, Phys. Rev. B 80, 184422 (2009).
10.X. Fan, E. Himbeault, Y. S. Gui, A. Wirthmann, G. Williams, D. Xue, and C. M. Hu, J. Appl. Phys. 108, 046102 (2010).
11.W. T. Soh, X. Zhong, and C. K. Ong, Appl. Phys. Lett. 105, 112401 (2014).
12.Y. Gui, N. Mecking, and C. Hu, Phys. Rev. Lett. 98, 217603 (2007).
13.M. P. Wismayer, B. W. Southern, X. L. Fan, Y. S. Gui, C. M. Hu, and R. E. Camley, Phys. Rev. B 85, 064411 (2012).
14.S. Sangiao and M. Viret, Phys. Rev. B 89, 104412 (2014).
15.A. Wirthmann, X. Fan, Y. S. Gui, K. Martens, G. Williams, J. Dietrich, G. E. Bridges, and C. M. Hu, Phys. Rev. Lett. 105, 017202 (2010).
16.X. F. Zhu, M. Harder, A. Wirthmann, B. Zhang, W. Lu, Y. S. Gui, and C. M. Hu, Phys. Rev. B 83, 104407 (2011).
17.Z. X. Cao, M. Harder, L. Fu, B. Zhang, W. Lu, G. E. Bridges, Y. S. Gui, and C. M. Hu, Appl. Phys. Lett. 100, 252406 (2012).
18.B. M. Yao, L. Fu, X. S. Chen, W. Lu, L. H. Bai, Y. S. Gui, and C. M. Hu, Appl. Phys. Lett. 104, 062408 (2014).
19.E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).
20.K. Ando, Y. Kajiwara, S. Takahashi, S. Maekawa, K. Takemoto, M. Takatsu, and E. Saitoh, Phys. Rev. B 78, 014413 (2008).
21.O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. B 82, 214403 (2010).
22.K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, and E. Saitoh, J. Appl. Phys. 109, 103913 (2011).
23.Z. Feng, J. Hu, L. Sun, B. You, D. Wu, J. Du, W. Zhang, A. Hu, Y. Yang, D. M. Tang, B. S. Zhang, and H. F. Ding, Phys. Rev. B 85, 214423 (2012).
24.H. Y. Hung, G. Y. Luo, Y. C. Chiu, P. Chang, W. C. Lee, J. G. Lin, S. F. Lee, M. Hong, and J. Kwo, J. Appl. Phys. 113, 17C507 (2013).
25.W. T. Soh, B. Peng, and C. K. Ong, J. Phys. D: Appl. Phys. 47, 285001 (2014).
26.M. Obstbaum, M. Härtinger, H. G. Bauer, T. Meier, F. Swientek, C. H. Back, and G. Woltersdorf, Phys. Rev. B 89, 060407(R) (2014).
27.L. Bai, P. Hyde, Y. S. Gui, C. M. Hu, V. Vlaminck, J. E. Pearson, S. D. Bader, and A. Hoffmann, Phys. Rev. Lett. 111, 217602 (2013).
28.A. Azevedo, L. H. Vilela Leão, R. L. Rodriguez-Suarez, A. B. Oliveira, and S. M. Rezende, J. Appl. Phys. 97, 10C715 (2005).
29.L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011).
30.C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 101, 122404 (2012).
31.B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, Phys. Rev. Lett. 111, 066602 (2013).
32.P. Hyde, L. Bai, D. M. J. Kumar, B. W. Southern, C. M. Hu, S. Y. Huang, B. F. Miao, and C. L. Chien, Phys. Rev. B 89, 180404(R) (2014).
33.H. Wang, C. Du, P. Chris Hammel, and F. Yang, Appl. Phys. Lett. 104, 202405 (2014).
34.W. T. Soh, B. Peng, and C. K. Ong, J. Appl. Phys. 117, 153903 (2015).
35.W. Nernst, Annalen der Physik 267, 760 (1887).
36.W. T. Soh, N. N. Phuoc, C. Y. Tan, and C. K. Ong, J. Appl. Phys. 114, 053908 (2013).
37.H. Wang, C. Du, P. C. Hammel, and F. Yang, Phys. Rev. Lett. 113, 097202 (2014).
38.A. Azevedo, O. Alves Santos, G. A. Fonseca Guerra, R. O. Cunha, R. Rodríguez-Suárez, and S. M. Rezende, Appl. Phys. Lett. 104, 052402 (2014).
39.C. S. Wolfe, V. P. Bhallamudi, H. L. Wang, C. H. Du, S. Manuilov, R. M. Teeling-Smith, A. J. Berger, R. Adur, F. Y. Yang, and P. C. Hammel, Phys. Rev. B 89, 180406(R) (2014).

Data & Media loading...


Article metrics loading...



The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd