Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. W. Kelly, “Alternative conformations of amyloidogenic proteins govern their behavior,” Curr. Opin. Struct. Biol. 6, 11-17 (1996).
2.A. Lomakin, D. S. Chung, G. B. Benedek, D. A. Kirschner, and D. B. Teplow, “On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants,” Proc. Natl. Acad. Sci. U S A 93, 1125-1129 (1996).
3.J. T. Jarrett and P. T. Lansbury, Jr., “Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie?,” Cell 73, 1055-1058 (1993).
4.T. P. J. Knowles, C. A. Waudby, G. L. Devlin, S. I. A. Cohen, A. Aguzzi, M. Vendruscolo, E. M. Terentjev, M. E. Welland, and C. M. Dobson, “An Analytical Solution to the Kinetics of Breakable Filament Assembly,” Science 326, 1533-1537 (2009).
5.J.-X. Lu, W. Qiang, W.-M. Yau, Charles D. Schwieters, Stephen C. Meredith, and R. Tycko, “Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue,” Cell 154, 1257-1268 (2013).
6.M. Jucker and L. C. Walker, “Self-propagation of pathogenic protein aggregates in neurodegenerative diseases,” Nature 501, 45-51 (2013).
7.A. Tiiman, A. Noormägi, M. Friedemann, J. Krishtal, P. Palumaa, and V. Tõugu, “Effect of agitation on the peptide fibrillization: Alzheimer’s amyloid-beta peptide 1-42 but not amylin and insulin fibrils can grow under quiescent conditions,” Journal of Peptide Science 19, 386-391 (2013).
8.W. B. Stine, Jr., K. N. Dahlgren, G. A. Krafft, and M. J. LaDu, “In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis,” J.Biol.Chem. 278, 11612-11622 (2003).
9.K. M. Batzli and B. J. Love, “Agitation of amyloid proteins to speed aggregation measured by ThT fluorescence: A call for standardization,” Mater Sci Eng C Mater Biol Appl 48C, 359-364 (2015).
10.A. Karafin, P. Palumaa, and V. Tõugu, “Monitoring of amyloid-beta fibrillization using an improved fluorimetric method,” in New Trends in Alzheimer & Parkinson Related Disorders: ADPD 2009. 9th International Conference on Alzheimer’s and Parkinson’s Diseases, edited by A. Fisher and I. Hanin (Medimond Prague, Czech Republic, 2009), pp. 255-261.
11.K. Zovo, E. Helk, A. Karafin, V. Tõugu, and P. Palumaa, “Label-free high-throughput screening assay for inhibitors of Alzheimer’s amyloid-beta peptide aggregation based on MALDI MS,” Anal. Chem. 82, 8558-8565 (2010).
12.S. A. Hudson, H. Ecroyd, T. W. Kee, and J. A. Carver, “The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds,” FEBS J. 276, 5960-5972 (2009).
13.L. Nielsen, S. Frokjaer, J. Brange, V. N. Uversky, and A. L. Fink, “Probing the mechanism of insulin fibril formation with insulin mutants,” Biochemistry 40, 8397-8409 (2001).
14.L. Lang, M. Kurnik, J. Danielsson, and M. Oliveberg, “Fibrillation precursor of superoxide dismutase 1 revealed by gradual tuning of the protein-folding equilibrium,” Proc. Natl. Acad. Sci. U S A 109, 17868-17873 (2012).
15.E. Hellstrand, B. Boland, D. M. Walsh, and S. Linse, “Amyloid β-Protein Aggregation Produces Highly Reproducible Kinetic Data and Occurs by a Two-Phase Process,” ACS Chem. Neurosci. 1, 13-18 (2009).
16.V. Tõugu, A. Karafin, K. Zovo, R. S. Chung, C. Howells, A. K. West, and P. Palumaa, “Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators,” J. Neurochem. 110, 1784-1795 (2009).
17.F. Massi and J. E. Straub, “Energy landscape theory for Alzheimer’s amyloid beta-peptide fibril elongation,” Proteins 42, 217-229 (2001).;2-N
18.G. Bitan, M. D. Kirkitadze, A. Lomakin, S. S. Vollers, G. B. Benedek, and D. B. Teplow, “Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways,” Proc. Natl. Acad. Sci. U S A 100, 330-335 (2003).
19.L. R. Powell, K. D. Dukes, and R. K. Lammi, “Probing the efficacy of peptide-based inhibitors against acid- and zinc-promoted oligomerization of amyloid-beta peptide via single-oligomer spectroscopy,” Biophys. Chem. 160, 12-19 (2012).
20.A. S. Johansson, F. Berglind-Dehlin, G. Karlsson, K. Edwards, P. Gellerfors, and L. Lannfelt, “Physiochemical characterization of the Alzheimer’s disease-related peptides A beta 1-42Arctic and A beta 1-42wt,” FEBS J. 273, 2618-2630 (2006).
21.M. S. Lin, L. Y. Chen, H. T. Tsai, S. S. Wang, Y. Chang, A. Higuchi, and W. Y. Chen, “Investigation of the Mechanism of beta-Amyloid Fibril Formation by Kinetic and Thermodynamic Analyses,” Langmuir 24, 5802-5808 (2008).
22.R. Carrotta, M. Manno, D. Bulone, V. Martorana, and P. L. San Biagio, “Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism,” J.Biol.Chem. 280, 30001-30008 (2005).
23.K. N. Dahlgren, A. M. Manelli, W. B. Stine, Jr., L. K. Baker, G. A. Krafft, and M. J. LaDu, “Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability,” J.Biol.Chem. 277, 32046-32053 (2002).
24.W. P. Esler, E. R. Stimson, J. M. Jennings, H. V. Vinters, J. R. Ghilardi, J. P. Lee, P. W. Mantyh, and J. E. Maggio, “Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism,” Biochemistry 39, 6288-6295 (2000).
25.O. Gursky and S. Aleshkov, “Temperature-dependent beta-sheet formation in beta-amyloid Abeta(1-40) peptide in water: uncoupling beta-structure folding from aggregation,” Biochim. Biophys. Acta 1476, 93-102 (2000).
26.J. D. Schmit, “Kinetic theory of amyloid fibril templating,” J. Chem. Phys. 138, 185102 (2013).
27.C. J. Barrow and M. G. Zagorski, “Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition,” Science 253, 179-182 (1991).
28.H. Shao, S. Jao, K. Ma, and M. G. Zagorski, “Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer’s disease,” J. Mol. Biol. 285, 755-773 (1999).
29.Y. Fezoui and D. B. Teplow, “Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization,” J.Biol.Chem. 277, 36948-36954 (2002).
30.Y. R. Chen, H. B. Huang, C. L. Chyan, M. S. Shiao, T. H. Lin, and Y. C. Chen, “The effect of A beta conformation on the metal affinity and aggregation mechanism studied by circular dichroism spectroscopy,” J. Biochem. 139, 733-740 (2006).
31.L. Hou, H. Shao, Y. Zhang, H. Li, N. K. Menon, E. B. Neuhaus, J. M. Brewer, I. J. Byeon, D. G. Ray, M. P. Vitek, T. Iwashita, R. A. Makula, A. B. Przybyla, and M. G. Zagorski, “Solution NMR studies of the A beta(1-40) and A beta(1-42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation,” J. Am. Chem. Soc. 126, 1992-2005 (2004).
32.D. L. Miller, I. A. Papayannopoulos, J. Styles, S. A. Bobin, Y. Y. Lin, K. Biemann, and K. Iqbal, “Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease,” Arch. Biochem. Biophys. 301, 41-52 (1993).
33.D. Frost, P. M. Gorman, C. M. Yip, and A. Chakrabartty, “Co-incorporation of A beta 40 and A beta 42 to form mixed pre-fibrillar aggregates,” Eur. J. Biochem. 270, 654-663 (2003).
34.L. Gu and Z. Guo, “Alzheimer’s Abeta42 and Abeta40 peptides form interlaced amyloid fibrils,” J. Neurochem. (2013).
35.Y. Yan and C. Wang, “Abeta40 Protects Non-toxic Abeta42 Monomer from Aggregation,” J. Mol. Biol. 369, 909-916 (2007).
36.A. Jan, O. Gokce, R. Luthi-Carter, and H. A. Lashuel, “The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity,” J.Biol.Chem. 283, 28176-28189 (2008).
37.J. Kim, L. Onstead, S. Randle, R. Price, L. Smithson, C. Zwizinski, D. W. Dickson, T. Golde, and E. McGowan, “Abeta40 inhibits amyloid deposition in vivo,” J. Neurosci. 27, 627-633 (2007).
38.J. R. Kim, A. Muresan, K. Y. Lee, and R. M. Murphy, “Urea modulation of beta-amyloid fibril growth: experimental studies and kinetic models,” Protein Sci. 13, 2888-2898 (2004).
39.C. Galvagnion, A. K. Buell, G. Meisl, T. C. T. Michaels, M. Vendruscolo, T. P. J. Knowles, and C. M. Dobson, “Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation,” Nat. Chem. Biol. 11, 229-234 (2015).
40.A. Tiiman, P. Palumaa, and V. Tõugu, “The missing link in the amyloid cascade of Alzheimer’s disease – Metal ions,” Neurochem. Int. 62, 367-378 (2013).

Data & Media loading...


Article metrics loading...



The amyloid deposition in the form of extracellular fibrillar aggregates of amyloid-β (Aβ) peptide is a critical pathological event in Alzheimer’s disease. Here, we report a systematic investigation of the effects of environmental factors on the kinetics of Aβ fibrillization . The effects of Aβ42 peptide concentration, temperature, pH, added solvents and the ratio of Aβ40 and Aβ42 on the peptide fibrillization under agitated conditions was studied. The analysis show that the rate of fibril growth by monomer addition is not limited by diffusion but by rearrangement in the monomer structure, which is enhanced by low concentrations of fluorinated alcohols and characterized by the activation energy of 12 kcal/mol. Fibrillization rate decreases at pH values below 7.0 where simultaneous protonation of His 13 and 14 inhibits fibril formation. The lag period for Aβ42 was only twofold shorter and the fibril growth rate twofold faster than those of Aβ40. Lag period was shortened and the fibrillization rate was increased only at 90% content of Aβ42.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd