Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Westermark, A. Andersson, and G. T. Westermark, “Islet Amyloid Polypeptide, Islet Amyloid, and Diabetes Mellitus,” Physiol. Rev. 91, 795826 (2011).
2.J. A. Hebda and A. D. Miranker, “The Interplay of Catalysis and Toxicity by Amyloid Intermediates on Lipid Bilayers: Insights from Type II Diabetes,” Annu. Rev. Biophys. 38, 125152 (2009).
3.T. A. Lutz, “Control of energy homeostasis by amylin.,” Cell. Mol. Life Sci. 69, 19471965 (2012).
4.P. Cao, A. Abedini, and D. P. Raleigh, “Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology.,” Curr. Opin. Struct. Biol. 23, 8289 (2013).
5.G. G. Glenner, E. D. Eanes, and C. A. Wiley, “Amyloid fibrils formed from a segment of the pancreatic islet amyloid protein.,” Biochem. Biophys. Res. Commun. 155, 608614 (1988).
6.P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: Pinpointing amino acid residues linked to amyloid fibril formation.,” Proc. Natl. Acad. Sci. U.S.A. 87, 50365040 (1990).
7.P. Cao, P. Marek, H. Noor, V. Patsalo, L.-H. Tu, H. Wang, A. Abedini, and D. P. Raleigh, “Islet amyloid: From fundamental biophysics to mechanisms of cytotoxicity,” FEBS Lett. 587, 11061118 (2013).
8.D. F. Moriarty and D. P. Raleigh, “Effects of Sequential Proline Substitutions on Amyloid Formation by Human Amylin 20-29,” Biochemistry 38, 18111818 (1999).
9.A. Abedini, F. Meng, and D. P. Raleigh, “A Single-Point Mutation Converts the Highly Amyloidogenic Human Islet Amyloid Polypeptide into a Potent Fibrillization Inhibitor,” J. Am. Chem. Soc. 129, 1130011301 (2007).
10.Y. Porat, Y. Mazor, S. Efrat, and E. Gazit, “Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions.,” Biochemistry 43, 1445414462 (2004).
11.L.-M. Yan, M. Tatarek-Nossol, A. Velkova, A. Kazantzis, and A. Kapurniotu, “Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar affinity inhibitor of IAPP cytotoxic fibrillogenesis.,” Proc. Natl. Acad. Sci. U.S.A. 103, 20462051 (2006).
12.K. Tenidis, M. Waldner, J. Bernhagen, W. Fischle, M. Bergmann, M. Weber, M. L. Merkle, W. Voelter, H. Brunner, and A. Kapurniotu, “Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.,” J. Mol. Biol. 295, 10551071 (2000).
13.J. Green, C. Goldsbury, T. Mini, S. Sunderji, P. Frey, J. Kistler, G. Cooper, and U. Aebi, “Full-length Rat Amylin Forms Fibrils Following Substitution of Single Residues from Human Amylin,” J. Mol. Biol. 326, 11471156 (2003).
14.J. McQueen, “Pramlintide acetate.,” Am. J. Health-Syst. Pharm. 62, 23632372 (2005).
15.G. J. Ryan, L. J. Jobe, and R. Martin, “Pramlintide in the treatment of type 1 and type 2 diabetes mellitus,” Clin. Ther. 27, 15001512 (2005).
16.A. V. Kajava, U. Aebi, and A. C. Steven, “The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin.,” J. Mol. Biol. 348, 247252 (2005).
17.S. Luca, W.-M. Yau, R. Leapman, and R. Tycko, “Peptide Conformation and Supramolecular Organization in Amylin Fibrils: Constraints from Solid-State NMR,” Biochemistry 46, 1350513522 (2007).
18.L. Wang, C. T. Middleton, S. Singh, A. S. Reddy, A. M. Woys, D. B. Strasfeld, P. Marek, D. P. Raleigh, J. J. de Pablo, M. T. Zanni, and J. L. Skinner, “2DIR spectroscopy of human amylin fibrils reflects stable β-sheet structure.,” J. Am. Chem. Soc. 133, 1606216071 (2011).
19.S. Bedrood, Y. Li, J. M. Isas, B. G. Hegde, U. Baxa, I. S. Haworth, and R. Langen, “Fibril structure of human islet amyloid polypeptide.,” J. Biol. Chem. 287, 52355241 (2012).
20.J. J. W. Wiltzius, S. A. Sievers, M. R. Sawaya, D. Cascio, D. Popov, C. Riekel, and D. Eisenberg, “Atomic structure of the cross-β spine of islet amyloid polypeptide (amylin),” Protein Sci. 17, 14671474 (2008).
21.J. Zhao, X. Yu, G. Liang, and J. Zheng, “Structural Polymorphism of Human Islet Amyloid Polypeptide (hIAPP) Oligomers Highlights the Importance of Interfacial Residue Interactions,” Biomacromolecules 12, 210220 (2011).
22.G. Liang, J. Zhao, X. Yu, and J. Zheng, “Comparative Molecular Dynamics Study of Human Islet Amyloid Polypeptide (IAPP) and Rat IAPP Oligomers.,” Biochemistry 52, 10891100 (2013).
23.N. F. Dupuis, C. Wu, J.-E. Shea, and M. T. Bowers, “Human Islet Amyloid Polypeptide Monomers Form Ordered β-hairpins: A Possible Direct Amyloidogenic Precursor,” J. Am. Chem. Soc. 131, 1828318292 (2009).
24.A. S. Reddy, L. Wang, S. Singh, Y. L. Ling, L. Buchanan, M. T. Zanni, J. L. Skinner, and J. J. de Pablo, “Stable and Metastable States of Human Amylin in Solution,” Biophys. J. 99, 22082216 (2010).
25.N. F. Dupuis, C. Wu, J.-E. Shea, and M. T. Bowers, “The Amyloid Formation Mechanism in Human IAPP: Dimers Have β-Strand MonomerMonomer Interfaces,” J. Am. Chem. Soc. 133, 72407243 (2011).
26.S. Singh, C.-c. Chiu, A. S. Reddy, and J. J. de Pablo, “α-helix to β-hairpin transition of human amylin monomer,” J. Chem. Phys. 138, 155101155101–10 (2013).
27.C.-c. Chiu, S. Singh, and J. J. de Pablo, “Effect of Proline Mutations on the Monomer Conformations of Amylin,” Biophys. J. 105, 12271235 (2013).
28.C. Wu and J.-E. Shea, “Structural Similarities and Differences between Amyloidogenic and Non-Amyloidogenic Islet Amyloid Polypeptide (IAPP) Sequences and Implications for the Dual Physiological and Pathological Activities of These Peptides.,” PLoS Comput. Biol. 9, e1003211 (2013).
29.C. T. Middleton, P. Marek, P. Cao, C.-c. Chiu, S. Singh, A. M. Woys, J. J. de Pablo, D. P. Raleigh, and M. T. Zanni, “Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor.,” Nat. Chem. 4, 355360 (2012).
30.J. D. Knight, J. A. Hebda, and A. D. Miranker, “Conserved and Cooperative Assembly of Membrane-Bound α-Helical States of Islet Amyloid Polypeptide,” Biochemistry 45, 94969508 (2006).
31.R. P. R. Nanga, J. R. Brender, J. Xu, K. Hartman, V. Subramanian, and A. Ramamoorthy, “Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy.,” J. Am. Chem. Soc. 131, 82528261 (2009).
32.S. M. Patil, S. Xu, S. R. Sheftic, and A. T. Alexandrescu, “Dynamic alpha-helix structure of micelle-bound human amylin.,” J. Biol. Chem. 284, 1198211991 (2009).
33.J. A. Williamson and A. D. Miranker, “Direct detection of transient alpha-helical states in islet amyloid polypeptide.,” Protein Sci. 16, 110117 (2007).
34.J. R. Cort, Z. Liu, G. M. Lee, K. N. L. Huggins, S. Janes, K. Prickett, and N. H. Andersen, “Solution state structures of human pancreatic amylin and pramlintide,” Protein Eng. Des. Sel. 22, 497513 (2009).
35.L. E. Buchanan, E. B. Dunkelberger, H. Q. Tran, P.-N. Cheng, C.-c. Chiu, P. Cao, D. P. Raleigh, J. J. de Pablo, J. S. Nowick, and M. T. Zanni, “Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet.,” Proc. Natl. Acad. Sci. U.S.A. 110, 1928519290 (2013).
36.S. Piana and A. Laio, “A Bias-Exchange Approach to Protein Folding,” J. Phys. Chem. B 111, 45534559 (2007).
37.C. Oostenbrink, A. Villa, A. E. Mark, and W. F. van Gunsteren, “A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.,” J. Comput. Chem. 25, 16561676 (2004).
38.H. Berendsen, J. Postma, P. B. P. E. Van Gunsteren, and W F , Intermolecular Forces (Reidel, Dordecht, 1981), p. 331.
39.P. Mark and L. Nilsson, “Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K,” J. Phys. Chem. A 105, 99549960 (2001).
40.A. S. Reddy, L. Wang, Y.-S. Lin, Y. Ling, M. Chopra, M. T. Zanni, J. L. Skinner, and J. J. de Pablo, “Solution Structures of Rat Amylin Peptide: Simulation, Theory, and Experiment,” Biophys. J. 98, 443451 (2010).
41.D. Petrov and B. Zagrovic, “Are current atomistic force fields accurate enough to study proteins in crowded environments?,” PLoS Comput. Biol. 10, e1003638 (2014).
42.T. Darden, D. York, and L. Pedersen, “Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems,” J. Chem. Phys. 98, 1008910092 (1993).
43.U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A Smooth Particle Mesh Ewald Method,” J. Chem. Phys. 103, 85778593 (1995).
44.B. Hess, H. Bekker, H. Berendsen, and J. Fraaije, “LINCS: A linear constraint solver for molecular simulations,” J. Comput. Chem. 18, 14631472 (1997).;2-H
45.S. Nose, “A Molecular-Dynamics Method for Simulations in the Canonical Ensemble,” Mol. Phys. 52, 255268 (1984).
46.S. Nose, “A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods,” J. Chem. Phys. 81, 511519 (1984).
47.W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions.,” Phys. Rev. A 31, 16951697 (1985).
48.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation,” J. Chem. Theory Comput. 4, 435447 (2008).
49.F. Marinelli, F. Pietrucci, A. Laio, and S. Piana, “A Kinetic Model of Trp-Cage Folding from Multiple Biased Molecular Dynamics Simulations,” PLoS Comput. Biol. 5, e1000452 (2009).
50.F. Baftizadeh, X. Biarnes, F. Pietrucci, F. Affinito, and A. Laio, “Multidimensional View of Amyloid Fibril Nucleation in Atomistic Detail,” J. Am. Chem. Soc. 134, 38863894 (2012).
51.F. Baftizadeh, F. Pietrucci, X. Biarnes, and A. Laio, “Nucleation Process of a Fibril Precursor in the C-Terminal Segment of Amyloid-β,” Phys. Rev. Lett. 110, 168103 (2013).
52.A. Laio and M. Parrinello, “Escaping free-energy minima.,” Proc. Natl. Acad. Sci. U.S.A. 99, 1256212566 (2002).
53.B. Berg and T. Neuhaus, “Multicanonical ensemble: A new approach to simulate first-order phase transitions.,” Phys. Rev. Lett. 68, 912 (1992).
54.Q. Yan and J. J. de Pablo, “Hyperparallel tempering Monte Carlo simulation of polymeric systems,” J. Chem. Phys. 113, 1276 (2000).
55.S. Singh, M. Chopra, and J. J. de Pablo, “Density of States–Based Molecular Simulations,” Annu. Rev. Chem. Biomol. Eng. 3, 369394 (2012).
56.A. Laio and F. L. Gervasio, “Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science,” Rep. Prog. Phys. 71, 126601 (2008).
57.X. Biarnes, F. Pietrucci, F. Marinelli, and A. Laio, “METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations,” Comput. Phys. Commun. 183, 203211 (2012).
58.S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, “The weighted histogram analysis method for free–energy calculations on biomolecules. I. The method,” J. Comput. Chem. 13, 10111021 (1992).
59.M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R. A. Broglia, and M. Parrinello, “PLUMED: A portable plugin for free-energy calculations with molecular dynamics,” Comput. Phys. Commun. 180, 19611972 (2009).
60.W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics.,” J. Mol. Graph. 14, 33–827–8 (1996).
61.S. Takada, Z. Luthey-Schulten, and P. G. Wolynes, “Folding dynamics with nonadditive forces: A simulation study of a designed helical protein and a random heteropolymer,” J. Chem. Phys. 110, 11616 (1999).
62.F. Pietrucci and A. Laio, “A Collective Variable for the Efficient Exploration of Protein Beta-Sheet Structures: Application to SH3 and GB1,” J. Chem. Theory Comput. 5, 21972201 (2009).
63.W. Kabsch and C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features.,” Biopolymers 22, 25772637 (1983).
64.S.-H. Shim, R. Gupta, Y. L. Ling, D. B. Strasfeld, D. P. Raleigh, and M. T. Zanni, “Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution.,” Proc. Natl. Acad. Sci. U.S.A. 106, 66146619 (2009).
65.D. Frishman and P. Argos, “Knowledge-based protein secondary structure assignment.,” Proteins: Struct., Funct., Bioinf. 23, 566579 (1995).

Data & Media loading...


Article metrics loading...



Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient -sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd