Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4921073
1.
1.P. Westermark, A. Andersson, and G. T. Westermark, “Islet Amyloid Polypeptide, Islet Amyloid, and Diabetes Mellitus,” Physiol. Rev. 91, 795826 (2011).
http://dx.doi.org/10.1152/physrev.00042.2009
2.
2.J. A. Hebda and A. D. Miranker, “The Interplay of Catalysis and Toxicity by Amyloid Intermediates on Lipid Bilayers: Insights from Type II Diabetes,” Annu. Rev. Biophys. 38, 125152 (2009).
http://dx.doi.org/10.1146/annurev.biophys.050708.133622
3.
3.T. A. Lutz, “Control of energy homeostasis by amylin.,” Cell. Mol. Life Sci. 69, 19471965 (2012).
http://dx.doi.org/10.1007/s00018-011-0905-1
4.
4.P. Cao, A. Abedini, and D. P. Raleigh, “Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology.,” Curr. Opin. Struct. Biol. 23, 8289 (2013).
http://dx.doi.org/10.1016/j.sbi.2012.11.003
5.
5.G. G. Glenner, E. D. Eanes, and C. A. Wiley, “Amyloid fibrils formed from a segment of the pancreatic islet amyloid protein.,” Biochem. Biophys. Res. Commun. 155, 608614 (1988).
http://dx.doi.org/10.1016/S0006-291X(88)80538-2
6.
6.P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: Pinpointing amino acid residues linked to amyloid fibril formation.,” Proc. Natl. Acad. Sci. U.S.A. 87, 50365040 (1990).
http://dx.doi.org/10.1073/pnas.87.13.5036
7.
7.P. Cao, P. Marek, H. Noor, V. Patsalo, L.-H. Tu, H. Wang, A. Abedini, and D. P. Raleigh, “Islet amyloid: From fundamental biophysics to mechanisms of cytotoxicity,” FEBS Lett. 587, 11061118 (2013).
http://dx.doi.org/10.1016/j.febslet.2013.01.046
8.
8.D. F. Moriarty and D. P. Raleigh, “Effects of Sequential Proline Substitutions on Amyloid Formation by Human Amylin 20-29,” Biochemistry 38, 18111818 (1999).
http://dx.doi.org/10.1021/bi981658g
9.
9.A. Abedini, F. Meng, and D. P. Raleigh, “A Single-Point Mutation Converts the Highly Amyloidogenic Human Islet Amyloid Polypeptide into a Potent Fibrillization Inhibitor,” J. Am. Chem. Soc. 129, 1130011301 (2007).
http://dx.doi.org/10.1021/ja072157y
10.
10.Y. Porat, Y. Mazor, S. Efrat, and E. Gazit, “Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions.,” Biochemistry 43, 1445414462 (2004).
http://dx.doi.org/10.1021/bi048582a
11.
11.L.-M. Yan, M. Tatarek-Nossol, A. Velkova, A. Kazantzis, and A. Kapurniotu, “Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar affinity inhibitor of IAPP cytotoxic fibrillogenesis.,” Proc. Natl. Acad. Sci. U.S.A. 103, 20462051 (2006).
http://dx.doi.org/10.1073/pnas.0507471103
12.
12.K. Tenidis, M. Waldner, J. Bernhagen, W. Fischle, M. Bergmann, M. Weber, M. L. Merkle, W. Voelter, H. Brunner, and A. Kapurniotu, “Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.,” J. Mol. Biol. 295, 10551071 (2000).
http://dx.doi.org/10.1006/jmbi.1999.3422
13.
13.J. Green, C. Goldsbury, T. Mini, S. Sunderji, P. Frey, J. Kistler, G. Cooper, and U. Aebi, “Full-length Rat Amylin Forms Fibrils Following Substitution of Single Residues from Human Amylin,” J. Mol. Biol. 326, 11471156 (2003).
http://dx.doi.org/10.1016/S0022-2836(02)01377-3
14.
14.J. McQueen, “Pramlintide acetate.,” Am. J. Health-Syst. Pharm. 62, 23632372 (2005).
http://dx.doi.org/10.2146/ajhp050341
15.
15.G. J. Ryan, L. J. Jobe, and R. Martin, “Pramlintide in the treatment of type 1 and type 2 diabetes mellitus,” Clin. Ther. 27, 15001512 (2005).
http://dx.doi.org/10.1016/j.clinthera.2005.10.009
16.
16.A. V. Kajava, U. Aebi, and A. C. Steven, “The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin.,” J. Mol. Biol. 348, 247252 (2005).
http://dx.doi.org/10.1016/j.jmb.2005.02.029
17.
17.S. Luca, W.-M. Yau, R. Leapman, and R. Tycko, “Peptide Conformation and Supramolecular Organization in Amylin Fibrils: Constraints from Solid-State NMR,” Biochemistry 46, 1350513522 (2007).
http://dx.doi.org/10.1021/bi701427q
18.
18.L. Wang, C. T. Middleton, S. Singh, A. S. Reddy, A. M. Woys, D. B. Strasfeld, P. Marek, D. P. Raleigh, J. J. de Pablo, M. T. Zanni, and J. L. Skinner, “2DIR spectroscopy of human amylin fibrils reflects stable β-sheet structure.,” J. Am. Chem. Soc. 133, 1606216071 (2011).
http://dx.doi.org/10.1021/ja204035k
19.
19.S. Bedrood, Y. Li, J. M. Isas, B. G. Hegde, U. Baxa, I. S. Haworth, and R. Langen, “Fibril structure of human islet amyloid polypeptide.,” J. Biol. Chem. 287, 52355241 (2012).
http://dx.doi.org/10.1074/jbc.M111.327817
20.
20.J. J. W. Wiltzius, S. A. Sievers, M. R. Sawaya, D. Cascio, D. Popov, C. Riekel, and D. Eisenberg, “Atomic structure of the cross-β spine of islet amyloid polypeptide (amylin),” Protein Sci. 17, 14671474 (2008).
http://dx.doi.org/10.1110/ps.036509.108
21.
21.J. Zhao, X. Yu, G. Liang, and J. Zheng, “Structural Polymorphism of Human Islet Amyloid Polypeptide (hIAPP) Oligomers Highlights the Importance of Interfacial Residue Interactions,” Biomacromolecules 12, 210220 (2011).
http://dx.doi.org/10.1021/bm101159p
22.
22.G. Liang, J. Zhao, X. Yu, and J. Zheng, “Comparative Molecular Dynamics Study of Human Islet Amyloid Polypeptide (IAPP) and Rat IAPP Oligomers.,” Biochemistry 52, 10891100 (2013).
http://dx.doi.org/10.1021/bi301525e
23.
23.N. F. Dupuis, C. Wu, J.-E. Shea, and M. T. Bowers, “Human Islet Amyloid Polypeptide Monomers Form Ordered β-hairpins: A Possible Direct Amyloidogenic Precursor,” J. Am. Chem. Soc. 131, 1828318292 (2009).
http://dx.doi.org/10.1021/ja903814q
24.
24.A. S. Reddy, L. Wang, S. Singh, Y. L. Ling, L. Buchanan, M. T. Zanni, J. L. Skinner, and J. J. de Pablo, “Stable and Metastable States of Human Amylin in Solution,” Biophys. J. 99, 22082216 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.07.014
25.
25.N. F. Dupuis, C. Wu, J.-E. Shea, and M. T. Bowers, “The Amyloid Formation Mechanism in Human IAPP: Dimers Have β-Strand MonomerMonomer Interfaces,” J. Am. Chem. Soc. 133, 72407243 (2011).
http://dx.doi.org/10.1021/ja1081537
26.
26.S. Singh, C.-c. Chiu, A. S. Reddy, and J. J. de Pablo, “α-helix to β-hairpin transition of human amylin monomer,” J. Chem. Phys. 138, 155101155101–10 (2013).
http://dx.doi.org/10.1063/1.4798460
27.
27.C.-c. Chiu, S. Singh, and J. J. de Pablo, “Effect of Proline Mutations on the Monomer Conformations of Amylin,” Biophys. J. 105, 12271235 (2013).
http://dx.doi.org/10.1016/j.bpj.2013.07.029
28.
28.C. Wu and J.-E. Shea, “Structural Similarities and Differences between Amyloidogenic and Non-Amyloidogenic Islet Amyloid Polypeptide (IAPP) Sequences and Implications for the Dual Physiological and Pathological Activities of These Peptides.,” PLoS Comput. Biol. 9, e1003211 (2013).
http://dx.doi.org/10.1371/journal.pcbi.1003211
29.
29.C. T. Middleton, P. Marek, P. Cao, C.-c. Chiu, S. Singh, A. M. Woys, J. J. de Pablo, D. P. Raleigh, and M. T. Zanni, “Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor.,” Nat. Chem. 4, 355360 (2012).
http://dx.doi.org/10.1038/nchem.1293
30.
30.J. D. Knight, J. A. Hebda, and A. D. Miranker, “Conserved and Cooperative Assembly of Membrane-Bound α-Helical States of Islet Amyloid Polypeptide,” Biochemistry 45, 94969508 (2006).
http://dx.doi.org/10.1021/bi060579z
31.
31.R. P. R. Nanga, J. R. Brender, J. Xu, K. Hartman, V. Subramanian, and A. Ramamoorthy, “Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy.,” J. Am. Chem. Soc. 131, 82528261 (2009).
http://dx.doi.org/10.1021/ja9010095
32.
32.S. M. Patil, S. Xu, S. R. Sheftic, and A. T. Alexandrescu, “Dynamic alpha-helix structure of micelle-bound human amylin.,” J. Biol. Chem. 284, 1198211991 (2009).
http://dx.doi.org/10.1074/jbc.M809085200
33.
33.J. A. Williamson and A. D. Miranker, “Direct detection of transient alpha-helical states in islet amyloid polypeptide.,” Protein Sci. 16, 110117 (2007).
http://dx.doi.org/10.1110/ps.062486907
34.
34.J. R. Cort, Z. Liu, G. M. Lee, K. N. L. Huggins, S. Janes, K. Prickett, and N. H. Andersen, “Solution state structures of human pancreatic amylin and pramlintide,” Protein Eng. Des. Sel. 22, 497513 (2009).
http://dx.doi.org/10.1093/protein/gzp029
35.
35.L. E. Buchanan, E. B. Dunkelberger, H. Q. Tran, P.-N. Cheng, C.-c. Chiu, P. Cao, D. P. Raleigh, J. J. de Pablo, J. S. Nowick, and M. T. Zanni, “Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet.,” Proc. Natl. Acad. Sci. U.S.A. 110, 1928519290 (2013).
http://dx.doi.org/10.1073/pnas.1314481110
36.
36.S. Piana and A. Laio, “A Bias-Exchange Approach to Protein Folding,” J. Phys. Chem. B 111, 45534559 (2007).
http://dx.doi.org/10.1021/jp067873l
37.
37.C. Oostenbrink, A. Villa, A. E. Mark, and W. F. van Gunsteren, “A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.,” J. Comput. Chem. 25, 16561676 (2004).
http://dx.doi.org/10.1002/jcc.20090
38.
38.H. Berendsen, J. Postma, P. B. P. E. Van Gunsteren, and W F , Intermolecular Forces (Reidel, Dordecht, 1981), p. 331.
39.
39.P. Mark and L. Nilsson, “Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K,” J. Phys. Chem. A 105, 99549960 (2001).
http://dx.doi.org/10.1021/jp003020w
40.
40.A. S. Reddy, L. Wang, Y.-S. Lin, Y. Ling, M. Chopra, M. T. Zanni, J. L. Skinner, and J. J. de Pablo, “Solution Structures of Rat Amylin Peptide: Simulation, Theory, and Experiment,” Biophys. J. 98, 443451 (2010).
http://dx.doi.org/10.1016/j.bpj.2009.10.029
41.
41.D. Petrov and B. Zagrovic, “Are current atomistic force fields accurate enough to study proteins in crowded environments?,” PLoS Comput. Biol. 10, e1003638 (2014).
http://dx.doi.org/10.1371/journal.pcbi.1003638
42.
42.T. Darden, D. York, and L. Pedersen, “Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems,” J. Chem. Phys. 98, 1008910092 (1993).
http://dx.doi.org/10.1063/1.464397
43.
43.U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A Smooth Particle Mesh Ewald Method,” J. Chem. Phys. 103, 85778593 (1995).
http://dx.doi.org/10.1063/1.470117
44.
44.B. Hess, H. Bekker, H. Berendsen, and J. Fraaije, “LINCS: A linear constraint solver for molecular simulations,” J. Comput. Chem. 18, 14631472 (1997).
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
45.
45.S. Nose, “A Molecular-Dynamics Method for Simulations in the Canonical Ensemble,” Mol. Phys. 52, 255268 (1984).
http://dx.doi.org/10.1080/00268978400101201
46.
46.S. Nose, “A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods,” J. Chem. Phys. 81, 511519 (1984).
http://dx.doi.org/10.1063/1.447334
47.
47.W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions.,” Phys. Rev. A 31, 16951697 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
48.
48.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation,” J. Chem. Theory Comput. 4, 435447 (2008).
http://dx.doi.org/10.1021/ct700301q
49.
49.F. Marinelli, F. Pietrucci, A. Laio, and S. Piana, “A Kinetic Model of Trp-Cage Folding from Multiple Biased Molecular Dynamics Simulations,” PLoS Comput. Biol. 5, e1000452 (2009).
http://dx.doi.org/10.1371/journal.pcbi.1000452
50.
50.F. Baftizadeh, X. Biarnes, F. Pietrucci, F. Affinito, and A. Laio, “Multidimensional View of Amyloid Fibril Nucleation in Atomistic Detail,” J. Am. Chem. Soc. 134, 38863894 (2012).
http://dx.doi.org/10.1021/ja210826a
51.
51.F. Baftizadeh, F. Pietrucci, X. Biarnes, and A. Laio, “Nucleation Process of a Fibril Precursor in the C-Terminal Segment of Amyloid-β,” Phys. Rev. Lett. 110, 168103 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.168103
52.
52.A. Laio and M. Parrinello, “Escaping free-energy minima.,” Proc. Natl. Acad. Sci. U.S.A. 99, 1256212566 (2002).
http://dx.doi.org/10.1073/pnas.202427399
53.
53.B. Berg and T. Neuhaus, “Multicanonical ensemble: A new approach to simulate first-order phase transitions.,” Phys. Rev. Lett. 68, 912 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.9
54.
54.Q. Yan and J. J. de Pablo, “Hyperparallel tempering Monte Carlo simulation of polymeric systems,” J. Chem. Phys. 113, 1276 (2000).
http://dx.doi.org/10.1063/1.481905
55.
55.S. Singh, M. Chopra, and J. J. de Pablo, “Density of States–Based Molecular Simulations,” Annu. Rev. Chem. Biomol. Eng. 3, 369394 (2012).
http://dx.doi.org/10.1146/annurev-chembioeng-062011-081032
56.
56.A. Laio and F. L. Gervasio, “Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science,” Rep. Prog. Phys. 71, 126601 (2008).
http://dx.doi.org/10.1088/0034-4885/71/12/126601
57.
57.X. Biarnes, F. Pietrucci, F. Marinelli, and A. Laio, “METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations,” Comput. Phys. Commun. 183, 203211 (2012).
http://dx.doi.org/10.1016/j.cpc.2011.08.020
58.
58.S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, “The weighted histogram analysis method for free–energy calculations on biomolecules. I. The method,” J. Comput. Chem. 13, 10111021 (1992).
http://dx.doi.org/10.1002/jcc.540130812
59.
59.M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R. A. Broglia, and M. Parrinello, “PLUMED: A portable plugin for free-energy calculations with molecular dynamics,” Comput. Phys. Commun. 180, 19611972 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.05.011
60.
60.W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics.,” J. Mol. Graph. 14, 33–827–8 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
61.
61.S. Takada, Z. Luthey-Schulten, and P. G. Wolynes, “Folding dynamics with nonadditive forces: A simulation study of a designed helical protein and a random heteropolymer,” J. Chem. Phys. 110, 11616 (1999).
http://dx.doi.org/10.1063/1.479101
62.
62.F. Pietrucci and A. Laio, “A Collective Variable for the Efficient Exploration of Protein Beta-Sheet Structures: Application to SH3 and GB1,” J. Chem. Theory Comput. 5, 21972201 (2009).
http://dx.doi.org/10.1021/ct900202f
63.
63.W. Kabsch and C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features.,” Biopolymers 22, 25772637 (1983).
http://dx.doi.org/10.1002/bip.360221211
64.
64.S.-H. Shim, R. Gupta, Y. L. Ling, D. B. Strasfeld, D. P. Raleigh, and M. T. Zanni, “Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution.,” Proc. Natl. Acad. Sci. U.S.A. 106, 66146619 (2009).
http://dx.doi.org/10.1073/pnas.0805957106
65.
65.D. Frishman and P. Argos, “Knowledge-based protein secondary structure assignment.,” Proteins: Struct., Funct., Bioinf. 23, 566579 (1995).
http://dx.doi.org/10.1002/prot.340230412
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4921073
Loading
/content/aip/journal/adva/5/9/10.1063/1.4921073
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4921073
2015-05-08
2016-12-10

Abstract

Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient -sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4921073.html;jsessionid=XO1rQ9MnSWVGzpU4cy76KlrS.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4921073&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4921073&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4921073'
Right1,Right2,Right3,