Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4921314
1.
1.K. J. Barnham and A. I. Bush, Chem. Soc. Rev. 43, 6727 (2014) and references therein.
http://dx.doi.org/10.1039/C4CS00138A
2.
2.(a) Q. Ma, Y. Li, J. Du, H. Liu, K. Kanazawa, T. Nemoto, H. Nakanishi, and Y. Zhao, Peptides 27, 841 (2006);
http://dx.doi.org/10.1016/j.peptides.2005.09.002
2.(b) L. M. Sayre, G. Perry, P. L. Harris, Y. Liu, K. A. Schubert, and M. A. Smith, J. Neurochem. 74, 270 (2000).
http://dx.doi.org/10.1046/j.1471-4159.2000.0740270.x
3.
3.I. Kuperstein, K. Broersen, I. Benilova, J. Rozenski, W. Jonckheere, M. Debulpaep, A. Vandersteen, I. Segers-Nolten, K. Van Der Werf, V. Subramaniam, D. Braeken, G. Callewaert, C. Bartic, R. D’Hooge, I. C. Martins, F. Rousseau, J. Schymkowitz, and B. De Strooper, The EMBO Journal 29, 3408 (2010).
http://dx.doi.org/10.1038/emboj.2010.211
4.
4.A. Koyama, O. I. Okereke, T. Yang, D. Blacker, D. J. Selkoe, and F. Grodstein, Arch. Neurol. 69, 824 (2012).
5.
5.(a) R. A. Cherny, J. T. Legg, C. A. McLean, D. P. Fairlie, X. Huang, C. S. Atwood, K. Beyreuther, R. E. Tanzi, C. L. Masters, and A. I. Bush, J. Biol. Chem. 274, 23223 (1999);
http://dx.doi.org/10.1074/jbc.274.33.23223
5.(b) M. Pesaresi, C. Lovati, P. Bertora, E. Mailland, D. Galimberti, E. Scarpini, P. Quadri, G. Forloni, and C. Mariani, Neurobiol. Aging 27, 904 (2006);
http://dx.doi.org/10.1016/j.neurobiolaging.2006.03.004
5.(c) D. R. Gustafson, I. Skoog, L. Rosengren, H. Zetterberg, and K. Blennow, J. Neurol. Neurosurg. Psychiatry 78, 461 (2007).
http://dx.doi.org/10.1136/jnnp.2006.100529
6.
6.P. Faller, C. Hureau, and G. La Penna, Acc. Chem. Res. 47, 2252 (2014).
http://dx.doi.org/10.1021/ar400293h
7.
7.W. Zheng and A. D. Monnot, Pharmacol. Ther. 133, 177 (2012).
http://dx.doi.org/10.1016/j.pharmthera.2011.10.006
8.
8.M. A. Greenough, J. Camakaris, and A. I. Bush, Neurochem. Int. 62, 540 (2013).
http://dx.doi.org/10.1016/j.neuint.2012.08.014
9.
9.M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, and W. R. Markesbery, J. Neurol. Sci. 158, 47 (1998).
http://dx.doi.org/10.1016/S0022-510X(98)00092-6
10.
10.M. A. Greenough, J. Camakaris, and A. I. Bush, Neurochem. Int. 62, 540 (2013).
http://dx.doi.org/10.1016/j.neuint.2012.08.014
11.
11.L. M. Miller, Q. Wang, T. P. Telivala, R. J. Smith, A. Lanzirotti, and J. Miklossy, J. Struct. Biol. 155, 30 (2006).
http://dx.doi.org/10.1016/j.jsb.2005.09.004
12.
12.M. F. Beal, Ann. Neurol. 58, 495 (2005).
http://dx.doi.org/10.1002/ana.20624
13.
13.P. Bermejo, S. Martin-Aragon, J. Benedi, C. Susin, E. Felici, P. Gil, J. M. Ribera, and A. M. Villar, Free Radic. Res. 42, 162 (2008).
http://dx.doi.org/10.1080/10715760701861373
14.
14.L. L. Torres, N. B. Quaglio, G. T. de Souza, R. T. Garcia, L. M. Dati, W. L. Moreira, A. P. Loureiro, J. N. de Souza-Talarico, J. Smid, C. S. Porto, C. M. Bottino, R. Nitrini, S. B. Barros, R. Camarini, and T. Marcourakis, J. Alzheimers Dis. 26, 59 (2011).
15.
15.P. A. Adlard, A. K. West, and J. C. Vickers, Neurobiol. Dis. 5, 349 (1998).
http://dx.doi.org/10.1006/nbdi.1998.0203
16.
16.I. W. Hamley, Chem. Rev. 112, 5147 (2012) and references therein.
http://dx.doi.org/10.1021/cr3000994
17.
17.S. A. James, I. Volitakis, P. A. Adlard, J. A. Duce, C. L. Masters, R. A. Cherny, and A. I. Bush, Free Radical Biol. Med. 52, 298 (2012).
http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.446
18.
18.M. L. Guerinot, Biochim. Biophys. Acta 1465, 190 (2000).
http://dx.doi.org/10.1016/S0005-2736(00)00138-3
19.
19.E. Madsen and J. D. Gitlin, Annu. Rev. Neurosci. 30, 317 (2007).
http://dx.doi.org/10.1146/annurev.neuro.30.051606.094232
20.
20.(a) S. Jun, J. R. Gillespie, B. K. Shin, and S. Saxena, Biochemistry 48, 10724 (2009);
http://dx.doi.org/10.1021/bi9012935
20.(b) J. T. Pedersen, J. Ostergaard, N. Rozlosnik, B. Gammelgaard, and N. H. Heegaard, J. Biol. Chem. 286, 26952 (2011).
http://dx.doi.org/10.1074/jbc.M111.220863
21.
21.M. Mold, L. Ouro-Gnao, B. M. Wieckowski, and C. Exley, Sci. Rep. 3, 1256 (2013).
http://dx.doi.org/10.1038/srep01256
22.
22.F. Hane, G. Tran, S. J. Attwood, and Z. Leonenko, PLOS One 8, e59005 (2013).
http://dx.doi.org/10.1371/journal.pone.0059005
23.
23.J. T. Pedersen, K. Teilum, N. H. Heegaard, J. Ostergaard, H. W. Adolph, and L. Hemmingsen, Angew. Chem. Int. Ed. 50, 2532 (2011).
http://dx.doi.org/10.1002/anie.201006335
24.
24.B. Raman, T. Ban, K. Yamaguchi, M. Sakai, T. Kawai, H. Naiki, and Y. Goto, J. Biol. Chem. 280, 16157 (2005).
http://dx.doi.org/10.1074/jbc.M500309200
25.
25.W. P. Hu, G. L. Chang, S. J. Chen, and Y. M. Kuo, J. Neurosci. Methods 154, 190 (2006).
http://dx.doi.org/10.1016/j.jneumeth.2005.12.016
26.
26.C. Ha, J. Ryu, and C. B. Park, Biochemistry 46, 6118 (2007).
http://dx.doi.org/10.1021/bi7000032
27.
27.(a) C. J. Sarell, S. R. Wilkinson, and J. H. Viles, J. Biol. Chem. 285, 41533 (2010);
http://dx.doi.org/10.1074/jbc.M110.171355
27.(b) X. Huang, C. S. Atwood, R. D. Moir, M. A. Hartshorn, R. E. Tanzi, and A. I. Bush, J. Biol. Inorg. Chem. 9, 954 (2004).
http://dx.doi.org/10.1007/s00775-004-0602-8
28.
28.Y. Yoshiike, K. Tanemura, O. Murayama, T. Akagi, M. Murayama, S. Sato, X. Sun, N. Tanaka, and A. Takashima, J. Biol. Chem. 276, 32293 (2001).
http://dx.doi.org/10.1074/jbc.M010706200
29.
29.J. Zou, K. Kajita, and N. Sugimoto, Angew. Chem. Int. Ed. 40, 2274 (2001).
http://dx.doi.org/10.1002/1521-3773(20010618)40:12%3C2274::AID-ANIE2274%3E3.0.CO;2-5
30.
30.E. House, M. Mold, J. F. Collingwood, A. Baldwin, S. Goodwin, and C. Exley, J. Alzheimers Dis. 18, 811 (2009).
31.
31.(a) P. Hortschansky, V. Schroeckh, T. Christopeit, G. Zandomeneghi, and M. Fändrich, Protein Sci. 14, 1753 (2005);
http://dx.doi.org/10.1110/ps.041266605
31.(b) M. Guo, P. M. Gorman, M. Rico, A. Chakrabartty, and D. V. Laurents, FEBS Lett. 579, 3574 (2005).
http://dx.doi.org/10.1016/j.febslet.2005.05.036
32.
32.S. J. Wood, B. Maleeff, T. Hart, and R. Wetzel, J. Mol. Biol. 256, 870 (1996).
http://dx.doi.org/10.1006/jmbi.1996.0133
33.
33.P. Faller, C. Hureau, and O. Berthoumieu, Inorg. Chem. 52, 12193 (2013) and references therein.
http://dx.doi.org/10.1021/ic4003059
34.
34.C. S. Atwood, R. D. Moir, X. Huang, N. M. E. Bacarra, R. C. Scarpa, D. M. Romano, M. A. Hartshorn, R. E. Tanzi, and A. I. Bush, J. Biol. Chem. 273, 12817 (1998).
http://dx.doi.org/10.1074/jbc.273.21.12817
35.
35.C. J. Sarell, C. D. Syme, S. E. Rigby, and J. H. Viles, Biochemistry 48, 4388 (2009).
http://dx.doi.org/10.1021/bi900254n
36.
36.(a) C. D. Syme, R. C. Nadal, S. E. Rigby, and J. H. Viles, J. Biol. Chem. 279, 18169 (2004);
http://dx.doi.org/10.1074/jbc.M313572200
36.(b) S. C. Drew, C. J. Noble, C. L. Masters, G. R. Hanson, and K. J. Barnham, J. Am. Chem. Soc. 131, 1195 (2009);
http://dx.doi.org/10.1021/ja808073b
36.(c) J. W. Karr and V. A. Szalai, Biochemistry 47, 5006 (2008).
http://dx.doi.org/10.1021/bi702423h
37.
37.(a) Y. Miller, B. Ma, and R. Nussinov, Proc. Natl. Acad. Sci. U.S.A 107, 9490 (2010);
http://dx.doi.org/10.1073/pnas.0913114107
37.(b) C. D. Syme and J. H. Viles, Biochim. Biophys. Acta 1764, 246 (2006);
http://dx.doi.org/10.1016/j.bbapap.2005.09.012
37.(c) V. Minicozzi, F. Stellato, M. Comai, M. D. Serra, C. Potrich, W. Meyer-Klaucke, and S. Morante, J. Biol. Chem. 283, 10784 (2008);
http://dx.doi.org/10.1074/jbc.M707109200
37.(d) P. Giannozzi, K. Jansen, G. La Penna, V. Minicozzi, S. Morante, G. Rossi, and F. Stellato, Metallomics 4, 156 (2012).
http://dx.doi.org/10.1039/C2MT00148A
38.
38.H. You, S. Tsutsui, S. Hameed, T. J. Kannanayakal, L. Chen, P. Xia, J. D. Engbers, S. A. Lipton, P. K. Stys, and G. W. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 109, 1737 (2012).
http://dx.doi.org/10.1073/pnas.1110789109
39.
39.K. J. Barnham, G. D. Ciccotosto, A. K. Tickler, F. E. Ali, D. G. Smith, N. A. Williamson, Y.-H. Lam, D. Carrington, D. Tew, G. Kocak, I. Volitakis, F. Separovic, C. J. Barrow, J. D. Wade, C. L. Masters, R. A. Cherny, C. C. Curtain, A. I. Bush, and R. Cappai, J. Biol. Chem. 278, 42959 (2003).
http://dx.doi.org/10.1074/jbc.M305494200
40.
40.Y. K. Al-Hilaly, T. L Williams, M. Stewart-Parker, L. Ford, E. Skaria, M. Cole, W. G. Bucher, K. L. Morris, A. A. Sada, J. R. Thorpe, and L. C. Serpell, Acta Neuropathologica Communications 1, 83 (2013).
http://dx.doi.org/10.1186/2051-5960-1-83
41.
41.D. P. Smith, D. G. Smith, C. C. Curtain, J. F. Boas, J. R. Pilbrow, G. D. Ciccotosto, T. L. Lau, D. J. Tew, K. Perez, J. D. Wade, A. I. Bush, S. C. Drew, F. Separovic, C. L. Masters, R. Cappai, and K. J. Barnham, J. Biol. Chem. 281, 15145 (2006).
http://dx.doi.org/10.1074/jbc.M600417200
42.
42.C. Exley, E. House, A. Polwart, and M. M. Esiri, J. Alzheimers. Dis. 31, 725 (2012).
43.
43.C. Talmard, L. Guilloreau, Y. Coppel, H. Mazarguil, and P. Faller, ChemBioChem 8, 163 (2007).
http://dx.doi.org/10.1002/cbic.200600319
44.
44.K. H. Lim, Y. K. Kim, and Y.-T. Chang, Biochemistry 46, 13523 (2007).
http://dx.doi.org/10.1021/bi701112z
45.
45.C. Hureau and P. Dorlet, Coord. Chem. Rev. 256, 2175 (2012).
http://dx.doi.org/10.1016/j.ccr.2012.03.034
46.
46.J. Shearer, P. E. Callan, T. Tran, and V. A. Szalai, Chem. Commun. 46, 9137 (2010).
http://dx.doi.org/10.1039/c0cc02446e
47.
47.R. Tycko, Q. Rev. Biophys. 39, 1 (2006).
http://dx.doi.org/10.1017/S0033583506004173
48.
48.(a) K. L. Peck, H. S. Clewett, J. C. Schmitt, and J. Shearer, Chem. Commun. 49, 4797 (2013);
http://dx.doi.org/10.1039/c3cc40326b
48.(b) S. C. Drew, W. M. Kok, C. A. Hutton, and K. J. Barnham, Appl. Magn. Reson. 44, 927 (2013).
http://dx.doi.org/10.1007/s00723-013-0450-1
49.
49.(a) R. A. Himes, G. Y. Park, G. S. Siluvai, N. J. Blackburn, and K. D. Karlin, Angew. Chem. 47, 9084 (2008);
http://dx.doi.org/10.1002/anie.200803908
49.(b) C. Hureau, V. Balland, Y. Coppel, P. L. Solari, E. Fonda, and P. Faller, J. Biol. Inorg. Chem. 14, 995 (2009);
http://dx.doi.org/10.1007/s00775-009-0570-0
49.(c) S. Furlan, C. Hureau, P. Faller, and G. La Penna, J. Phys. Chem. B 114, 15119 (2010).
http://dx.doi.org/10.1021/jp102928h
50.
50.J. Shearer and V. A. Szalai, J. Am. Chem. Soc. 130, 17826 (2008).
http://dx.doi.org/10.1021/ja805940m
51.
51.S. C. Drew and K. J. Barnham, Acc. Chem. Res. 44, 1146 (2011).
http://dx.doi.org/10.1021/ar200014u
52.
52.W. A. Gunderson, J. Hernández-Guzmán, J. W. Karr, L. Sun, V. A. Szalai, and K. Warncke, J. Am. Chem. Soc. 134, 18330 (2012).
http://dx.doi.org/10.1021/ja306946q
53.
53.C. Vigo-Pelfrey, D. Lee, P. Keim, I. Lieberburg, and D. B. Schenk, J. Neurochem. 61, 1965 (1993).
http://dx.doi.org/10.1111/j.1471-4159.1993.tb09841.x
54.
54.(a) P. Faller and C. Hureau, Dalton Trans. 1080 (2009);
http://dx.doi.org/10.1039/B813398K
54.(b) P. Faller, Chembiochem 10, 2837 (2009).
http://dx.doi.org/10.1002/cbic.200900321
55.
55.D. Jiang, L. Zhang, G. Paola, G. Grant, C. G. Dudzik, S. Chen, S. Patel, Y. Hao, G. L. Millhauser, and F. Zhou, Biochemistry 52, 547 (2013).
http://dx.doi.org/10.1021/bi301053h
56.
56.C. S. Atwood, R. C. Scarpa, X. Huang, R. D. Moir, W. D. Jones, D. P. Fairlie, R. E. Tanzi, and A. I. Bush, J. Neurochem. 75, 1219 (2000).
http://dx.doi.org/10.1046/j.1471-4159.2000.0751219.x
57.
57.I. Zawisza, M. Rózga, and W. Bal, Coord. Chem. Rev. 256, 2297 (2012).
http://dx.doi.org/10.1016/j.ccr.2012.03.012
58.
58.M. Sokołowska and W. Bal, J. Inorg. Biochem. 99, 1653 (2005).
http://dx.doi.org/10.1016/j.jinorgbio.2005.05.007
59.
59.B. Alies, E. Renaglia, M. Rozga, W. Bal, P. Faller, and C. Hureau, Anal. Chem. 85, 1501 (2013).
http://dx.doi.org/10.1021/ac302629u
60.
60.V. Tougu, A. Karafin, and P. Palumaa, J. Neurochem. 104, 1249 (2008).
http://dx.doi.org/10.1111/j.1471-4159.2007.05061.x
61.
61.M. Rózga, M. Kłoniecki, M. Dadlez, and W. Bal, Chem. Res. Toxicol. 23, 336 (2010).
http://dx.doi.org/10.1021/tx900344n
62.
62.(a) L. Q. Hatcher, L. Hong, W. D. Bush, T. Carducci, and J. D. Simon, J. Phys. Chem. B 112, 8160 (2008);
http://dx.doi.org/10.1021/jp710806s
62.(b) L. Hong, W. D. Bush, L. Q. Hatcher, and J. D. Simon, J. Phys. Chem. B 112, 604 (2008).
http://dx.doi.org/10.1021/jp075747r
63.
63.W. Garzon-Rodriguez, A. K. Yatsimirsky, and C. G. Glabe, Bioorg. Med. Chem. Lett. 9, 2243 (1999).
http://dx.doi.org/10.1016/S0960-894X(99)00357-1
64.
64.J. W. Karr, H. Akintoye, L. J. Kaupp, and V. A. Szalai, Biochemistry 44, 5478 (2005).
http://dx.doi.org/10.1021/bi047611e
65.
65.Q. -F. Ma, L. Hu, W.-H. Wu, H.-D. Liu, J.-T. Du, Y. Fu, Y.-W. Wu, P. Lei, Y.-F. Zhao, and Y.-M Li, Biopolymers 83, 20 (2006).
http://dx.doi.org/10.1002/bip.20523
66.
66.C. A. Damante, K. Osz, Z. Nagy, G. Pappalardo, G. Grasso, G. Impellizzeri, E. Rizzarelli, and I. Sóvágó, Inorg. Chem. 47, 9669 (2008).
http://dx.doi.org/10.1021/ic8006052
67.
67.T. Kowalik-Jankowska, M. Ruta, K. Wisniewska, and L. Lankiewicz, J. Inorg. Biochem. 95, 270 (2003).
http://dx.doi.org/10.1016/S0162-0134(03)00128-4
68.
68.B. Alies, B. Badei, P. Faller, and C. Hureau, Chem. Eur. J. 18, 1161 (2012).
http://dx.doi.org/10.1002/chem.201102746
69.
69.Z. Xiao, L. Gottschlich, R. van der Meulen, S. R. Udagedara, and A. G. Wedd, Metallomics 5, 501 (2013).
http://dx.doi.org/10.1039/c3mt00032j
70.
70.H. A. Feaga, R. C. Maduka, M. N. Foster, and V. A. Szalai, Inorg. Chem. 50, 1614 (2011).
http://dx.doi.org/10.1021/ic100967s
71.
71.G. Multhaup, T. Ruppert, A. Schlicksupp, L. Hesse, E. Bill, R. Pipkorn, C. L. Masters, and K. Beyreuther, Biochemistry 37, 7224 (1998).
http://dx.doi.org/10.1021/bi980022m
72.
72.D. Jiang, X. Li, L. Liu, G. B. Yagnik, and F. Zhou, J. Phys. Chem. B 114, 4896 (2010).
http://dx.doi.org/10.1021/jp9095375
73.
73.M. Nakamura, N. Shishido, A. Nunomura, M. A. Smith, G. Perry, Y. Hayashi, K. Nakayama, and T. Hayashi, Biochemistry 46, 12737 (2007).
http://dx.doi.org/10.1021/bi701079z
74.
74.L.-E. Cassagnes, V. Herv, F. Nepveu, C. Hureau, P. Faller, and F. Collin, Angew. Chem. Int. Ed. 52, 11110 (2013).
http://dx.doi.org/10.1002/anie.201305372
75.
75.V. Balland, C. Hureau, and J. M. Saveant, Proc. Natl. Acad. Sci. USA 107, 17113 (2010).
http://dx.doi.org/10.1073/pnas.1011315107
76.
76.G. Y. Park, J. Y. Lee, R. A. Himes, G. S. Thomas, N. J. Blackburn, and K. D. Karlin, J. Am. Chem. Soc. 136, 12532 (2014).
http://dx.doi.org/10.1021/ja505098v
77.
77.L. Galeazzi, P. Ronchi, C. Franceschi, and S. Giunta, Amyloid 6, 7 (1999).
http://dx.doi.org/10.3109/13506129908993282
78.
78.J. C. Yoburn, W. Tian, J. O. Brower, J. S. Nowick, C. G. Glabe, and D. L. Van Vranken, Chem. Res. Toxicol. 16, 531 (2003).
http://dx.doi.org/10.1021/tx025666g
79.
79.C. S. Atwood, G. Perry, H. Zeng, Y. Kato, W. D. Jones, K.-Q. Ling, X. Huang, R. D. Moir, D. Wang, L. M. Sayre, M. A. Smith, S. G. Chen, and A. I. Bush, Biochemistry 43, 560 (2004).
http://dx.doi.org/10.1021/bi0358824
80.
80.G. F. Z. da Silva, V. Lykourinou, A. Angerhofer, and L.-J. Ming, Biochim. Biophys. Acta. 1792, 49 (2009).
http://dx.doi.org/10.1016/j.bbadis.2008.11.004
81.
81.(a) G. F. Z. da Silva, W. T. Tay, and L.-J. Ming, J. Biol. Chem. 280, 16601 (2005);
http://dx.doi.org/10.1074/jbc.M411533200
81.(b) G. F. Z. da Silva and L.-J. Ming, Angew. Chem. Int. Ed. 44, 5501 (2005).
http://dx.doi.org/10.1002/anie.200501013
82.
82.V. A. Streltsov and J. N. Varghese, Chem. Commun. 27, 3169 (2008).
http://dx.doi.org/10.1039/b803911a
83.
83.K. Voss, C. Harris, M. Ralle, M. Duffy, C. Murchison, and J. F. Quinn, Translational Neurodegeneration 3, 24 (2014).
http://dx.doi.org/10.1186/2047-9158-3-24
84.
84.R. A. Cherny, M. E. Xilinas, W. D. Jones, K. J. Barnham, F. W. Fraser, X. Huang, J. T. Lim, H. Zheng, C. S. Atwood, D. N. Gray, C. A. McLean, I. Volitakis, Y.-S. Kim, L. E. Goldstein, K. Beyreuther, R. E. Tanzi, and A. I. Bush, Neuron 30, 665 (2001).
http://dx.doi.org/10.1016/S0896-6273(01)00317-8
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4921314
Loading
/content/aip/journal/adva/5/9/10.1063/1.4921314
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4921314
2015-05-14
2016-12-07

Abstract

The relationship of copper dyshomeostasis with neurodegenerative diseases has become evident in the last years. Because of the major role that this metal ion plays in biological processes, most of which being located in the brain, it is not surprising that changes in its distribution are closely related with the advent of neurodegenerative disorders such as Alzheimer’s disease (AD). An increasing number of works have dealt with this subject in the last years, and opened an intense debate in some points while raising new questions that still remain unanswered. This revision work puts together and discusses the latest findings and insights on how copper ions are involved in AD progression, including its interaction with Aβ and its consequently induced aggregation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4921314.html;jsessionid=d9dO6feQPDPxdVj0oJtec7BF.x-aip-live-03?itemId=/content/aip/journal/adva/5/9/10.1063/1.4921314&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4921314&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4921314'
Right1,Right2,Right3,