Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4927544
2.
2.A. Bellucci, M. Zaltieri, L. Navarria, J. Grigoletto, C. Missale, and P. Spano, Brain Res. 1476, 183 (2012).
http://dx.doi.org/10.1016/j.brainres.2012.04.014
3.
3.P. H. Weinreb, W. Zhen, A. W. Poon, K. A. Conway, and P. T. Lansbury, Biochemistry 35, 13709 (1996).
http://dx.doi.org/10.1021/bi961799n
4.
4.M. G. Spillantini, M. L. S., V.M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, Nature 388, 839 (1997).
http://dx.doi.org/10.1038/42166
5.
5.V. N. Uversky, J. Li, and A. L. Fink, J. Biol. Chem. 276, 10737 (2001).
http://dx.doi.org/10.1074/jbc.M010907200
6.
6.V.N. Uversky, J. Li, P. Souillac, S. Doniac, R. Jakes, M. Goedert, and A.L Fink, J. Biological Chem. 277, 11970 (2002).
http://dx.doi.org/10.1074/jbc.M109541200
7.
7.T. Bartels, J. G. Choi, and D. J. Selkoe, Nature 477, 107 (2011).
http://dx.doi.org/10.1038/nature10324
8.
8.W. Wang, I. Perovic, J. Chittuluru, A. Kaganovich, L. T. T. Nguyen, J. Liao, J. R. Auclair, D. Johnson, A. Landeru, A. K. Simorellis, S. Ju, M. R. Cookson, F. J. Asturias, J. N. Agar, B. N. Webb, C. Kang, D. Ringe, G. A. Petsko, T. C. Pochapsky, and Q. Q. Hoang, Proc. Natl. Acad. Sci. 108, 17797 (2011).
http://dx.doi.org/10.1073/pnas.1113260108
9.
9.A. J. Trexler and E. Rhoades, Protein Sci. 21, 601 (2012).
http://dx.doi.org/10.1002/pro.2056
10.
10.B. Fauvet, M. K. Mbefo, M. B. Fares, C. Desobry, S. Michael, M. T. Ardah, E. Tsika, P. Coune, M. Prudent, N. Lion, D. Eliezer, D. J. Moore, B. Schneider, P. Aebischer, O. M. El-Agnaf, E. Masliah, and H. A. Lashuel, J. Biol. Chem. 287, 15345 (2012).
http://dx.doi.org/10.1074/jbc.M111.318949
11.
11.A. Binolfi, F. X. Theillet, and P. Selenko, Biochem. Soc. Trans. 40, 950 (2012).
http://dx.doi.org/10.1042/BST20120096
12.
12.C. Camilloni and M. Vendruscolo, J. Phys. Chem. 117, 10737 (2013).
http://dx.doi.org/10.1021/jp405614j
13.
13.M. Haj-Yahya, B. Fauvet, Y. Herman-Bachinsky, M. Hejjaoui, S. N. Bavikar, S. V. Karthikeyan, A. Ciechanover, H. A. Lashuel, and A. Brik, Proc. Natl. Acad. Sci. 110, 17726 (2013).
http://dx.doi.org/10.1073/pnas.1315654110
14.
14.M. M. Ouberai, J. Wang, M. J. Swann, C. Galvagnion, T. Guilliams, C. M. Dobson, and M. E. MWelland, J. Biological Chemistry 288, 20883 (2013).
http://dx.doi.org/10.1074/jbc.M113.478297
15.
15.E. Hellstrand, A. Nowacka, D. Topgaard, S. Linse, and E. Sparr, PLoS One 8, e77235 (2013).
http://dx.doi.org/10.1371/journal.pone.0077235
16.
16.T. R. Alderson and J. L. Markley, Intrinsically Disordered Proteins 1, e26255 (2013).
http://dx.doi.org/10.4161/idp.26255
17.
17.A. S. Maltsev, J. Ying, and A. Bax, Biochemistry 51, 5004 (2012).
http://dx.doi.org/10.1021/bi300642h
18.
18.D. C. DeWitt and E. Rhoades, Biochemistry 52, 2385 (2013).
http://dx.doi.org/10.1021/bi4002369
19.
19.Z. Jiang, M. de Messieres, and J. C. Lee, J. Am. Chem. Soc. 135, 15970 (2013).
http://dx.doi.org/10.1021/ja405993r
20.
20.H. Okazaki, Y. Ohori, M. Komoto, Y.-H. Lee, Y. Goto, N. Tochio, and C. Nishimura, FEBS Letters 587, 3709 (2013).
http://dx.doi.org/10.1016/j.febslet.2013.09.039
21.
21.L. Bousset, L. Pieri, G. Ruiz-Arlandis, J. Gath, P. H. Jensen, B. Habenstein, K. Madiona, V. Olieric, A. Bockmann, B. H. Meier, and R. Melki, Nature Communication DOI:10.1038/ncomms3575.
http://dx.doi.org/10.1038/ncomms3575
22.
22.S. Mysling, C. Betzer, P. H. Jensen, and T. J. D. Jorgensen, Biochemistry 52, 9097 (2013).
http://dx.doi.org/10.1021/bi4009193
23.
23.T. Gurry, O. Ullman, C. K. Fisher, I. Perovic, T. Pochapsky, and C. M. Stultz, J. Am. Chem. Soc. 135, 3865 (2013).
http://dx.doi.org/10.1021/ja310518p
24.
24.L. Cruz, B. Urbanc, J. M. Borreguero, N. D. Lazo, D. B. Teplow, and H. E. Stanley, Proc. Natl. Acad. Sci. U. S. A. 102, 18258 (2005).
http://dx.doi.org/10.1073/pnas.0509276102
25.
25.Y. C. Xu, J. J. Shen, X. M. Luo, W. L. Zhu, K. X. Chen, J. P. Ma, and H. L. Jiang, Proc. Natl. Acad. Sci. U. S. A. 102, 5403 (2005).
http://dx.doi.org/10.1073/pnas.0501218102
26.
26.A. Baumketner and J. E. Shea, J. Mol. Biol. 362, 567 (2006).
http://dx.doi.org/10.1016/j.jmb.2006.07.032
27.
27.I. Brovchenko, R. R. Burri, A. Krukau, A. Oleinikova, and R. Winter, J. Chem. Phys. 129, 195101 (2008).
http://dx.doi.org/10.1063/1.3012562
28.
28.L. Triguero, R. Singh, and R. Prabhakar, J. Phys. Chem. B 112, 71237131 (2008).
http://dx.doi.org/10.1021/jp801168v
29.
29.C. Lee and S. Ham, J. Comput. Chem. 32, 349355 (2011).
http://dx.doi.org/10.1002/jcc.21628
30.
30.O. Coskuner and O. Wise-Scira, ACS Chem. Neurosci. 4, 1101 (2013).
http://dx.doi.org/10.1021/cn400041j
31.
31.M. M. Dedmon, K. Lindorff-Larsen, J. Christodoulou, M. Vendruscolo, and C. M. Dobson, J. Am. Chem. Soc. 127, 476 (2005).
http://dx.doi.org/10.1021/ja044834j
32.
32.J. R. Allison, P. Varnai, C. M. Dobson, and M. Vendruscolo, J. Am. Chem. Soc. 131, 18314 (2009).
http://dx.doi.org/10.1021/ja904716h
33.
33.K.-P. Wu, D. S. Weinstock, C. Narayanan, R. M. Levy, and J. Baum, J. Mol. Biol. 391, 784 (2009).
http://dx.doi.org/10.1016/j.jmb.2009.06.063
34.
34.S. A. Jonsson, S. Mohanty, and A. Irback, Proteins 80, 2169 (2012).
http://dx.doi.org/10.1002/prot.24107
35.
35.M. Lal, Mol Phys 17, 57 (1969).
http://dx.doi.org/10.1080/00268976900100781
36.
36.Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K Binder (Oxford University Press, 1995).
37.
37.I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).
http://dx.doi.org/10.1021/ma00187a030
38.
38.A.P. Lyubartsev and A. Laaksonen, Phys. Rev. E 52, 3730 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.3730
39.
39.J. Zhou, S. Chen, and S. Jiang, Langmuir 19, 3472-3478 (2003).
http://dx.doi.org/10.1021/la026871z
40.
40.A. E. van Giessen and J. E. Straub, J. Chem. Phys. 122, 0249041 (2005).
http://dx.doi.org/10.1063/1.1833354
41.
41.D. Reith, M. Putz, and F. Muller-Plathe, J. Comput. Chem. 24, 1624 (2003).
http://dx.doi.org/10.1002/jcc.10307
42.
42.R. B. Pandey and B. L. Farmer, J. Chem. Phys. 132, 125101 (2010).
http://dx.doi.org/10.1063/1.3358340
43.
43.A. Liwo, C. Czaplewski, S. Oldziej, and H. A. Scheraga, Curr. Opin. Struct. Biol. 18, 134 (2008).
http://dx.doi.org/10.1016/j.sbi.2007.12.001
44.
44.F. Ercolessi and J. Adams, Europhys. Lett. 26, 583 (1994).
http://dx.doi.org/10.1209/0295-5075/26/8/005
45.
45.J. Zhou, I. F. Thorpe, S. Izvekov, and G.A. Voth, Biophys. J. 92, 4289 (2007).
http://dx.doi.org/10.1529/biophysj.106.094425
46.
46.D. H. de Jong, G. Singh, W. F. Drew Bennett, C. Arnarez, T. A. Wassenar et al., J. Chem. Theory Comput. 9, 687 (2013).
http://dx.doi.org/10.1021/ct300646g
47.
47.J. Sorensen, P. Xavier, K. K. Skeby, S. J. Marrink, and B. Schiott, J. Phys. Chem. Lett. 2, 2385 (2011).
http://dx.doi.org/10.1021/jz2010094
48.
48.T. Haliloglu and I. Bahar, Proteins 31, 271 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0134(19980515)31:3<271::AID-PROT4>3.0.CO;2-M
49.
49.Z. Wu, Q. Cui, and A. Yethiraj, J. Chem. Theory and Compu. 7, 3793 (2011).
http://dx.doi.org/10.1021/ct200593t
50.
50.S. Tanaka and H. A. Scheraga, Macromolecules 9, 945 (1976).
http://dx.doi.org/10.1021/ma60054a013
51.
51.S. Miyazawa and R. L. Jernigan, Macromolecules 18, 534 (1985).
http://dx.doi.org/10.1021/ma00145a039
52.
52.S. Miyazawa and R. L. Jernigan, J. Mol. Biol. 256, 623 (1996).
http://dx.doi.org/10.1006/jmbi.1996.0114
53.
53.M. R. Betancourt and D. Thirumalai, Protein Sci 2, 361 (1999).
54.
54.A. Godzik, A. Kolinski, and J. Skolnick, Proteins 4, 363 (1996).
55.
55.S.-Y. Huang and Z. Xiaoqin, Proteins 79, 2648 (2011).
http://dx.doi.org/10.1002/prot.23086
56.
56.M. Fritsche, R. B. Pandey, B. L. Farmer, and D. Heermann, PLoS one 7, e32075 (2012).
http://dx.doi.org/10.1371/journal.pone.0032075
57.
57.R. B. Pandey and B. L. Farmer, PLoS one 7, e49352 (2012).
http://dx.doi.org/10.1371/journal.pone.0049352
58.
58.R.B. Pandey et al., J. Polym. Sci. B: Polym. Phys. 48, 2566 (2010).
http://dx.doi.org/10.1002/polb.22140
59.
59.R.B. Pandey et al., Phys. Chem. Chem. Phys. 11, 1989 (2009).
http://dx.doi.org/10.1039/b816187a
60.
60.R. B. Pandey and B. L. Farmer, J. Chem. Phys. 139, 164901 (2013).
http://dx.doi.org/10.1063/1.4825370
61.
61.R. B. Pandey, B. L Farmer, and B.S. Gerstman, AIP Advances 5, 092502 (2015).
http://dx.doi.org/10.1063/1.4921074
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4927544
Loading
/content/aip/journal/adva/5/9/10.1063/1.4927544
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4927544
2015-07-24
2016-09-29

Abstract

Despite enormous efforts, our understanding the structure and dynamics of α-synuclein (ASN), a disordered protein (that plays a key role in neurodegenerative disease) is far from complete. In order to better understand sequence-structure-property relationships in α-SYNUCLEIN we have developed a coarse-grained model using knowledge-based residue-residue interactions and used it to study the structure of free ASN as a function of temperature (T) with a large-scale Monte Carlo simulation. Snapshots of the simulation and contour contact maps show changes in structure formation due to self-assembly as a function of temperature. Variations in the residue mobility profiles reveal clear distinction among three segments along the protein sequence. The N-terminal (1-60) and C-terminal (96-140) regions contain the least mobile residues, which are separated by the higher mobility non-amyloid component (NAC) (61-95). Our analysis of the intra-protein contact profile shows a higher frequency of residue aggregation (clumping) in the N-terminal region relative to that in the C-terminal region, with little or no aggregation in the NAC region. The radius of gyration (R) of ASN decays monotonically with decreasing the temperature, consistent with the finding of Allison et al. (JACS, 2009). Our analysis of the structure function provides an insight into the mass (N) distribution of ASN, and the dimensionality (D) of the structure as a function of temperature. We find that the globular structure with at low T, a random coil, ≈ 2 at high T and in between (2 ≤ D ≤ 3) at the intermediate temperatures. The magnitudes of D are in agreement with experimental estimates (J. Biological Chem 2002).

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4927544.html;jsessionid=MyopDt6sDAnCZovkHmtdufNo.x-aip-live-03?itemId=/content/aip/journal/adva/5/9/10.1063/1.4927544&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4927544&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4927544'
Right1,Right2,Right3,