Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930188
1.
1.M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nature Materials 4, 455 (2005).
http://dx.doi.org/10.1038/nmat1387
2.
2.D. Tsokkou, A. Othonos, and M. Zervos, Applied Physics Letters 100, 133101 (2012).
http://dx.doi.org/10.1063/1.3698097
3.
3.D. Tsokou, M. Zervos, and A. Othonos, J.Appl.Phys. 106, 084307 (2009).
http://dx.doi.org/10.1063/1.3245339
4.
4.M. Zervos, C. Mihailescu, A. Othonos, and J. Giapintzakis, Appl.Phys.Lett.Mat. 2, 056104 (2014).
5.
5.J. Huh, M.K. Joo, D. Jang, J.H. Lee, and G.T. Kim, J.Mater.Chem 22, 24012 (2012).
http://dx.doi.org/10.1039/c2jm35361j
6.
6.W.I. Park, J.S. Kim, G.C. Yi, M.H. Bae, and H.J. Lee, Appl.Phys.Lett. 85, 5052 (2004).
http://dx.doi.org/10.1063/1.1821648
7.
7.M. Zervos, C. Mihailescu, A. Othonos, J. Giapintzakis et al., Mat.SciEng.B. 198, 10 (2015).
8.
8.M. Zervos, C. Mihailescu, A. Othonos, J. Giapintzakis et al., Nano.Res.Lett. In Press (2015).
9.
9.E. Karageorgou, M. Zervos, and A. Othonos, Appl.Phys.Mat. 2, 116107 (2014).
10.
10.C.H. Ho and H.H. Chen, Scientific Reports 4, 6143 (2014).
http://dx.doi.org/10.1038/srep06143
11.
11.N. Barreau, S. Marsillac, D. Albertini, and J. Bernede, Thin Solid Films 403, 331 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01512-7
12.
12.M. Ajili and N.T. Kamoun, J.Mater.Sci. Mater Electron. 25, 3840 (2014).
http://dx.doi.org/10.1007/s10854-014-2097-6
13.
13.L. Bhira, T.B. Nasrallah, J.C. Bernede, and S. Belgacem, Mater.Chem.Phys. 72, 320 (2001).
http://dx.doi.org/10.1016/S0254-0584(01)00333-9
14.
14.E. Kolawa, C. Garland, L. Tran, L. Nieh et al., Applied Physics Letters 53, 2644 (1988).
http://dx.doi.org/10.1063/1.100541
15.
15.C. O’Dwyer, M. Szachowicz, G. Visimberga et al., Nature Nanotechnology 4, 239 (2009).
http://dx.doi.org/10.1038/nnano.2008.418
16.
16.J. Gao, R. Chen, D.H. Li, L. Jiang, J.C. Ye et al., Nanotechnology 22, 195706 (2011).
http://dx.doi.org/10.1088/0957-4484/22/19/195706
17.
17.Y. Ke, X. Weng, J.M. Redwing, C.M. Eichfeld et al., Nano Lett. 9, 4494 (2009).
http://dx.doi.org/10.1021/nl902808r
18.
18.G. Lefevre, M. Duc, P. Lepeut, R. Caplain, and M. Fedoroff, Langmuir 18, 7530 (2002).
http://dx.doi.org/10.1021/la025651i
19.
19.J.A. Rodriguez, S. Chaturvedi, M. Kuhn, and J. Hrbek, J.Phys.Chem.B 102, 5511 (1998).
http://dx.doi.org/10.1021/jp9815208
20.
20.A. Datta, S. Gorai, S. K. Panda, and S. Chaudhuri, Grystal Growth and Design 6, 1010 (2006).
http://dx.doi.org/10.1021/cg050649l
21.
21.W. Rehwald and G. Harbeke, J.Phys.Chem.Solids 26, 1309 (1965).
http://dx.doi.org/10.1016/0022-3697(65)90114-9
22.
22.M. Zervos, P. Papageorgiou, and A. Othonos, Journal Of Crystal Growth 312, 656 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2009.12.023
23.
23.G. Garlick, M. Springford, and H. Checinska, Proceedings of the Physical Society 82, 16 (2002).
http://dx.doi.org/10.1088/0370-1328/82/1/304
24.
24.P. Moroz, G. Liyanage, N.N. Kholmicheva et al., Chem.Mater. 26, 4256 (2014).
http://dx.doi.org/10.1021/cm501739h
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930188
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930188
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930188
2015-09-01
2016-09-27

Abstract

We have investigated the growth of Al doped InO nanowires via the vapor-liquid-solid mechanism at 800°C using Au as a catalyst. We find that the Al is not incorporated into the cubic bixbyite crystal structure of InO but nevertheless was detected in the form of Al O. The nanowires had metallic like conductivities and exhibited photoluminescence at 2.3 eV which shifted to 1.5 eV after exposure to HS above 500°C due to the formation of β-InS and deep donor to acceptor transitions with a lifetime of ≈1 μs. The near infra red emission was also observed in W/InO but not in W/SnO core-shell nanowires after processing under HS at 600°C, confirming it is related to β-InS. The nanowires remain one dimensional up to 900°C due to the shell which is interesting for the fabrication of high temperature nanowire sensors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930188.html;jsessionid=BxZM3sL2dGGhTv-T7JaUTnpW.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930188&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930188&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930188'
Right1,Right2,Right3,