Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930199
1.
1.G.E. Moore, Proceedings of the IEEE 86, 82 (1998).
http://dx.doi.org/10.1109/JPROC.1998.658762
2.
2.M.T. Bohr, Nanotechnology, IEEE Transactions on 1, 56 (2002).
http://dx.doi.org/10.1109/TNANO.2002.1005426
3.
3.S.E. Thompson, R.S. Chau, T. Ghani, K. Mistry, S. Tyagi, and M.T. Bohr, IEEE Transactions on Semiconductor Manufacturing 18, 26 (2005).
http://dx.doi.org/10.1109/TSM.2004.841816
4.
4.B.E. Foutz, L.F. Eastman, U.V. Bhapkar, and M.S. Shur, Applied Physics Letters 70, 2849 (1997).
http://dx.doi.org/10.1063/1.119021
5.
5.Y. Zhang and J. Singh, Journal of Applied Physics 85, 587 (1999).
http://dx.doi.org/10.1063/1.369493
6.
6.R. Oberhuber, G. Zandler, and P. Vogl, Applied Physics Letters 73, 818 (1998).
http://dx.doi.org/10.1063/1.122011
7.
7.E.H. Rhoderick, IEE Proceedings I (Solid-State and Electron Devices) 129, 1 (1982).
http://dx.doi.org/10.1049/ip-i-1.1982.0001
8.
8.L.M. Terman, Solid-State Electronics 5, 285 (1962).
http://dx.doi.org/10.1016/0038-1101(62)90111-9
9.
9.P. Chattopadhyay and A.N. Daw, Solid-State Electronics 29, 555 (1986).
http://dx.doi.org/10.1016/0038-1101(86)90078-X
10.
10.Z. Ouennoughi, Phys. Stat. Sol. (a) 160, 127 (1997).
http://dx.doi.org/10.1002/1521-396X(199703)160:1<127::AID-PSSA127>3.0.CO;2-5
11.
11.M.K. Hudait and S.B. Krupanidhi, Solid-State Electronics 44, 1089 (2000).
http://dx.doi.org/10.1016/S0038-1101(99)00320-2
12.
12.M. Sawada, T. Sawada, Y. Yamagata, K. Imai, H. Kimura, M. Yoshino, K. Iizuka, and H. Tomozawa, Journal of Crystal Growth 189, 706 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00265-6
13.
13.V.R. Reddy, M.S.P. Reddy, B.P. Lakshmi, and A.A. Kumar, Journal of Alloys and Compounds 509, 8001 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.05.055
14.
14.B.P. Lakshmi, M.S.P. Reddy, A.A. Kumar, and V.R. Reddy, Current Applied Physics 12, 765 (2012).
http://dx.doi.org/10.1016/j.cap.2011.11.002
15.
15.S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Applied Physics Letters 73, 809 (1998).
http://dx.doi.org/10.1063/1.122009
16.
16.G.D. Wilk, R.M. Wallace, and J.M. Anthony, Journal of Applied Physics 89, 5243 (2001).
http://dx.doi.org/10.1063/1.1361065
17.
17.J.H. Choi, Y. Mao, and J.P. Chang, Materials Science and Engineering: R: Reports 72, 97 (2011).
http://dx.doi.org/10.1016/j.mser.2010.12.001
18.
18.A.J. Zakrzewski, T.A. Krajewski, G. Luka, K. Goscinski, E. Guziewicz, and M. Godlewski, IEEE Transactions on Electron Devices 62, 630 (2015).
http://dx.doi.org/10.1109/TED.2014.2376979
19.
19.M.K. Hudait, P. Venkateswarlu, and S.B. Krupanidhi, Solid-State Electronics 45, 133 (2001).
http://dx.doi.org/10.1016/S0038-1101(00)00230-6
20.
20.M.K. Hudait and S.B. Krupanidhi, Materials Science and Engineering: B 87, 141 (2001).
http://dx.doi.org/10.1016/S0921-5107(01)00713-9
21.
21.T. Sawada, Y. Ito, N. Kimura, K. Imai, K. Suzuki, and S. Sakai, Applied Surface Science 190, 326 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)00904-7
22.
22.Koteswara Rao Peta, B.-G. Park, S.-T. Lee, M.-D. Kim, and J.-E. Oh, Microelectronic Engineering 93, 100 (2012).
http://dx.doi.org/10.1016/j.mee.2011.11.019
23.
23.M. Siva Pratap Reddy, A. Ashok Kumar, and V. Rajagopal Reddy, Thin Solid Films 519, 3844 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.258
24.
24.N. Yıldırım, K. Ejderha, and A. Turut, Journal of Applied Physics 108, 114506 (2010).
http://dx.doi.org/10.1063/1.3517810
25.
25.M.W. Allen, X. Weng, J.M. Redwing, K. Sarpatwari, S.E. Mohney, H. von Wenckstern, M. Grundmann, and S.M. Durbin, IEEE Transactions on Electron Devices 56, 2160 (2009).
http://dx.doi.org/10.1109/TED.2009.2026393
26.
26.F.E. Jones, B.P. Wood, J.A. Myers, C. Daniels-Hafer, and M.C. Lonergan, Journal of Applied Physics 86, 6431 (1999).
http://dx.doi.org/10.1063/1.371707
27.
27.F.Z. Pür and A. Tataroğlu, Physica Scripta 86, 035802 (2012).
http://dx.doi.org/10.1088/0031-8949/86/03/035802
28.
28.Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflère, and F. Cardon, Solid-State Electronics 29, 633 (1986).
http://dx.doi.org/10.1016/0038-1101(86)90145-0
29.
29.J.H. Werner and H.H. Güttler, Journal of Applied Physics 69, 1522 (1991).
http://dx.doi.org/10.1063/1.347243
30.
30.S. Acar, S. Karadeniz, N. Tuğluoğlu, A.B. Selçuk, and M. Kasap, Applied Surface Science 233, 373 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.04.011
31.
31.S. Doğan, S. Duman, B. Gürbulak, S. Tüzemen, and H. Morkoç, Physica E: Low-Dimensional Systems and Nanostructures 41, 646 (2009).
http://dx.doi.org/10.1016/j.physe.2008.10.020
32.
32.A. Tataroğlu and F.Z. Pür, Physica Scripta 88, 015801 (2013).
http://dx.doi.org/10.1088/0031-8949/88/01/015801
33.
33.S. Zeyrek, M.M. Bülbül, Ş. Altındal, M.C. Baykul, and H. Yüzer, Brazilian Journal of Physics 38, 591 (2008).
34.
34.D.E. Yıldız, Ş. Altındal, and H. Kanbur, Journal of Applied Physics 103, 124502 (2008).
http://dx.doi.org/10.1063/1.2936963
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930199
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930199
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930199
2015-09-01
2016-12-03

Abstract

This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930199.html;jsessionid=3HZFwaCDIy7g0ItQrxzuskqL.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930199&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930199&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930199'
Right1,Right2,Right3,