Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930200
1.
1.A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
3.
3.A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, Nano Letters 11, 2396 (2011).
http://dx.doi.org/10.1021/nl200758b
4.
4.D. Jena, Proc. of SPIE 8725, 872507 (2013).
http://dx.doi.org/10.1117/12.2018450
5.
5.D. Jena, Proc. of IEEE 101, 1585 (2013).
http://dx.doi.org/10.1109/JPROC.2013.2253435
6.
6.R. M. Feenstra, D. Jena, and G. Gu, J. of Appl. Phys. 111, 043711 (2012).
http://dx.doi.org/10.1063/1.3686639
7.
7.P. Zhao, R. M. Feenstra, G. Gu, and D. Jena, IEEE Trans. Electron Devices 60, 3 (2013).
http://dx.doi.org/10.1109/TED.2013.2291462
8.
8.S. C. de la Barrera, Q. Gao, and R. M. Feenstra, J. of Vac. Sci. Tech. 32, 04E101 (2014).
http://dx.doi.org/10.1116/1.4871760
9.
9.T. Roy, L. Liu, S. de la Barrera, B. Chakrabarti, Z. R. Hesabi, C. A. Joiner, R. M. Feenstra, G. Gu, and E. M. Vogel, Appl. Phys. Lett. 104, 123506 (2014).
http://dx.doi.org/10.1063/1.4870073
10.
10.L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
11.
11.L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, Nat. Commun. 4, 1794 (2013).
http://dx.doi.org/10.1038/ncomms2817
12.
12.L. A. Ponomarenko, B. D. Belle, R. Jalil, L. Britnell, R. V. Gorbachev, A. K. Geim, K. S. Novoselov, A. H. Castro Neto, L. Eaves, and M. I. Katsnelson, J. of Appl. Phys. 113, 136502 (2013).
http://dx.doi.org/10.1063/1.4795542
13.
13.A. Mishchenko, J. S. Tu, Y. Cao, R. V. Gorbachev, J. R Wallbank, M. T. Greenaway, V. E. Morozov, S. V. Morozov, M. J. Zhu, S. L. Wong, F. Withers, C. R. Woods, Y-J. Kim, K. Watanabe, T. Taniguchi, E. E. Vdovin, O. Makarovsky, T. M. Fromhold, V. I. Fal’ko, A. K. Geim, L. Eaves, and K. S. Novoselov, Nat. Nanotech 9, 808 (2014).
http://dx.doi.org/10.1038/nnano.2014.187
14.
14.M. Li, D. Esseni, D. Jena, and H. Xing, J. of Appl. Phys. 115, 074508 (2014).
http://dx.doi.org/10.1063/1.4866076
15.
15.M. Li, D. Esseni, D. Jena, and H. Xing, Device Research Conference 14516299, 17 (2014).
16.
16.M. Ryzhii, V. Ryzhii, T. Otsuji, P. P. Maltsev, V. G. Leiman, N. Ryabova, and V. Mitin, J. of Appl. Phys. 115, 024506 (2014).
http://dx.doi.org/10.1063/1.4861734
17.
17.V. E. Dorgan, M.-H Bae, and E. Pop, Appl. Phys. Lett. 97, 082112 (2010).
http://dx.doi.org/10.1063/1.3483130
18.
18.W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Phys. Rev. B 80, 235402 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.235402
19.
19.L. Britnell, Roman V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. Castro Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, Nano Lett. 12, 1707 (2012).
http://dx.doi.org/10.1021/nl3002205
20.
20.B. Sensale-Rodriguez, Appl. Phys. Lett. 103, 123109 (2013).
http://dx.doi.org/10.1063/1.4821221
21.
21.V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V. Mitin, and M. S. Shur, J. Phys. D: Appl. Phys. 46, 315107 (2013).
http://dx.doi.org/10.1088/0022-3727/46/31/315107
22.
22.V. Ryzhii, T. Otsuji, M. Ryzhii, V. G. Leiman, S. O. Yurchenko, V. Mitin, and M. S. Shur, J. of Appl. Phys. 112, 104507 (2012).
http://dx.doi.org/10.1063/1.4766814
23.
23.L. Brey, Phys. Rev. Appl. 2, 014003 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.014003
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930200
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930200
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930200
2015-09-01
2016-09-28

Abstract

In this paper, a two-dimensional (2-D) model for a graphene symmetric field effect transistor (SymFET), which considers (a) the intra-graphene layer potential distributions and (b) the internal current flows through the device, is presented and discussed. The local voltages along the graphene electrodes as well as the current-voltage characteristics of the device are numerically calculated based on a single-particle tunneling model. Our numerical results show that: (i) when the tunneling current is small, due to either a large tunneling thickness (≥ 2 atomic layers of BN) or a small coherence length, the voltage distributions along the graphene electrodes have almost zero variations upon including these distributed effects, (ii) when the tunnel current is large, due to either a small tunneling thickness (∼ 1 atomic layer of BN) or due to a large coherence length, the local voltage distributions along the graphene electrodes become appreciable and the device behavior deviates from that predicted by a 1-D approximation. These effects, which are not captured in one-dimensional SymFET models, can provide a better understanding about the electron dynamics in the device and might indicate potential novel applications for this proposed device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930200.html;jsessionid=fCDbqaxdVF1p8F-JDo0wdzbf.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930200&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930200&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930200'
Right1,Right2,Right3,