Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930255
1.
1.B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).
http://dx.doi.org/10.1063/1.1713945
2.
2.A. Kole and P. Chaudhuri, AIP Adv. 4, 107106 (2014).
http://dx.doi.org/10.1063/1.4897378
3.
3.L. Shen, Z. C. Liang, C. F. Liu, T. J. Long, and D. L. Wang, AIP Adv. 4, 027127 (2014).
http://dx.doi.org/10.1063/1.4866981
4.
4.K. Kimoto, H. Tanaka, D. Matsushita, K. Tatsumura, and S. Takeno, AIP Adv. 2, 042144 (2012).
http://dx.doi.org/10.1063/1.4768269
5.
5.M. A. U. Usman, B. J. Smith, J. B. Jackson, M. C. D. Long, and M. S. Miller, AIP Adv. 3, 032112 (2013).
http://dx.doi.org/10.1063/1.4794809
6.
6.L. M. Mack, A. Resiman, and P. K. Bhattacharya, J. Electrochem. Soc. 136, 3433 (1989).
http://dx.doi.org/10.1149/1.2096466
7.
7.D. B. Kao, J. P. Mcvittie, W. D. Nix, and K. C. Sarasat, IEEE Trans. Electron Devices ED-34, 1008 (1987).
8.
8.E. Kobeda and E. A. Irene, J. Vac. Sci. Technol. B 4, 720 (1986).
http://dx.doi.org/10.1116/1.583603
9.
9.A. Szekeres and P. Danesh, Semicond. Sci. Technol. 11, 1225 (1996).
http://dx.doi.org/10.1088/0268-1242/11/8/019
10.
10.N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529 (1923).
11.
11.B. Pieraggi and R. A. Rapp, Acta Metall. 36, 1281 (1988).
http://dx.doi.org/10.1016/0001-6160(88)90280-5
12.
12.B. Pieraggi, R. A. Rapp, and J. P. Hirth, Oxid. Met. 44, 63 (1994).
http://dx.doi.org/10.1007/BF01046723
13.
13.V. K. Tolpygo, J. R. Drygen, and D. R. Clarke, Acta Mater. 46, 927 (1998).
http://dx.doi.org/10.1016/S1359-6454(97)00306-6
14.
14.D. R. Clarke, Acta Mater. 51, 1393 (2003).
http://dx.doi.org/10.1016/S1359-6454(02)00532-3
15.
15.S. Maharjan, X. C. Zhang, F. Z. Xuan, Z. D. Wang, and S. T. Tu, J. Appl. Phys. 110, 063511 (2011).
http://dx.doi.org/10.1063/1.3626052
16.
16.S. Maharjan, X. C. Zhang, and Z. D. Wang, J. Appl. Phys. 112, 033514 (2012).
http://dx.doi.org/10.1063/1.4740048
17.
17.S. Maharjan, X. C. Zhang, and Z. D. Wang, Oxid. Met. 77, 93 (2012).
http://dx.doi.org/10.1007/s11085-011-9275-1
18.
18.Y. H. Suo and S. P. Shen, J. Appl. Phys. 114, 164905 (2013).
http://dx.doi.org/10.1063/1.4826530
19.
19.J. L. Ruan, Y. M. Pei, and D. N. Fang, Corros. Sci. 66, 315 (2013).
http://dx.doi.org/10.1016/j.corsci.2012.09.035
20.
20.J. L. Ruan, Y. M. Pei, and D. N. Fang, Acta Mech. 223, 2597 (2012).
http://dx.doi.org/10.1007/s00707-012-0739-4
21.
21.A. Fargeix and G. Ghibaudo, J. Appl. Phys. 56, 589 (1984).
http://dx.doi.org/10.1063/1.333924
22.
22.A. Fargeix and G. Ghibaudo, J. Appl. Phys. 54, 7153 (1983).
http://dx.doi.org/10.1063/1.331986
23.
23.M. Navi and Scott. T. Dunham, J. Electrochem. Soc. 144, 367 (1997).
http://dx.doi.org/10.1149/1.1837411
24.
24.H. Noma, H. Takahashi, H. Fujioka, M. Oshima, Y. Baba, K. Hirose, M. Niwa, K. Usuda, and Norio Hirashita, J. Appl. Phys. 90, 5434 (2001).
http://dx.doi.org/10.1063/1.1413229
25.
25.T. J. Delph and M. Lin, J. Mater. Res. 14, 4508 (1999).
http://dx.doi.org/10.1557/JMR.1999.0612
26.
26.E. A. Irene, E. Tierney, and J. Angilello, J. Electrochem. Soc. 129, 2594 (1982).
http://dx.doi.org/10.1149/1.2123617
27.
27.E. A. Irene, J. Appl. Phys. 54, 5416 (1983).
http://dx.doi.org/10.1063/1.332722
28.
28.E. Kobeda and E. A. Irene, J. Vac. Sci. Technol. B 6, 574 (1988).
http://dx.doi.org/10.1116/1.584402
29.
29.D. B. Kao, J. P. McVittie, W. D. Nix, and K. C. Saraswat, IEEE Trans. Electron Devices ED-35, 25 (1988).
http://dx.doi.org/10.1109/16.2412
30.
30.P. Sutardja and W. G. Oldham, IEEE Trans. Electron Devices 36, 2415 (1989).
http://dx.doi.org/10.1109/16.43661
31.
31.T. Tamura, N. Tanaka, M. Tagawa, N. Ohmae, and M. Umeno, Jpn. J. Appl. Phys. 32, 12 (1993).
http://dx.doi.org/10.1143/JJAP.32.12
32.
32.S. Alexandrova, A. Szekeres, and J. Koprinarova, Semicond. Sci. Technol. 4, 876 (1989).
http://dx.doi.org/10.1088/0268-1242/4/10/008
33.
33.J. Y. Yen and J. G. Hwu, Appl. Phys. Lett. 76, 1834 (2000).
http://dx.doi.org/10.1063/1.126181
34.
34.J. Y. Yen and J. G. Hwu, J. Appl. Phys. 89, 3027 (2001).
http://dx.doi.org/10.1063/1.1342801
35.
35.A. Mihalyi, R. J. Jaccodine, and T. J. Delph, Appl. Phys. Lett. 74, 1981 (1999).
http://dx.doi.org/10.1063/1.123720
36.
36.M. T. Lin, R. J. Jaccodine, and T. J. Delph, J. Mater. Res. 16, 728 (2001).
http://dx.doi.org/10.1557/JMR.2001.0112
37.
37.J. P. Hirth and W. A. Tiller, J. Appl. Phys. 56, 947 (1984).
http://dx.doi.org/10.1063/1.334033
38.
38.W. A. Tiller, J. Electrochem. Soc. 127, 625 (1980).
http://dx.doi.org/10.1149/1.2129723
39.
39.A. M. Lin, R. W. Dutton, D. A. Antoniadis, and W. A. Tiller, J. Electrochem. Soc. 128, 1121 (1981).
http://dx.doi.org/10.1149/1.2127563
40.
40.H. S. Moon, Ph. D. Thesis, Seoul National University, Seoul, 2002.
41.
41.S. A. Schafer and S. A. Lyon, Appl Phys. Lett. 47, 154 (1985).
http://dx.doi.org/10.1063/1.96246
42.
42.B. J. Mrstik, A. G. Revesz, M. Ancona, and H. L. Hughes, J. Electrochem. Soc. 134, 2020 (1987).
http://dx.doi.org/10.1149/1.2100811
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930255
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930255
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930255
2015-09-02
2016-09-26

Abstract

This work provided an analytical model to solve the coupled mechanical-oxidation problem during the silicon thermal oxidation process. The silicon thermal oxidation behavior under two different mechanical load conditions, i.e., constant strain and uniaxial stress, were considered. The variations of oxide stress and scale thickness along with oxidation time were predicted. During modeling, all the effects of stress accumulation due to growth strain, stress relaxation due to viscous flow and the external load on the scale growth rate were taken into consideration. Results showed that the existence of external loads had an obvious influence on the oxide stress and scale thickness. Generally, tensile stress or strain accelerated the oxidant diffusion process. However, the reaction rate at the Si/SiO interface was retarded under uniaxial stress, which was not found in the case of constant strain load.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930255.html;jsessionid=y_W5yY36gmILpor67DVkwprY.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930255&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930255&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930255'
Right1,Right2,Right3,