Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930258
1.
1.R. M. Butler, G. S. McNab, and H. Y. Lo, “Theoretical studies on the gravity drainage of heavy oil during in-situ steam heating,” Can. J. Chem. Eng. 59, 455460 (1981).
http://dx.doi.org/10.1002/cjce.5450590407
2.
2.J. M. Beck and A. E. Beck, “Computing thermal conductivities of rocks from chips and conventional specimen,” J. Geophysc. Res. 70, 5227-5239 (1965).
http://dx.doi.org/10.1029/JZ070i020p05227
3.
3.A. E. Beck, “An improved method of computing the thermal conductivity of fluid-filled sedimentary rocks,” Geophysics 41, 133-144 (1976).
http://dx.doi.org/10.1190/1.1440596
4.
4.F. Yu, G. S. Wei, X. X. Zhang, and K. Chen, “Two effective thermal conductivity models for porous media with hollow spherical agglomerates,” Int. J. Thermophys. 27, 293-303 (2006).
http://dx.doi.org/10.1007/s10765-006-0032-7
5.
5.F. Tong, L. Jing, and R. W. Zimmerman, “An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow,” International Journal of Rock Mechanics and Mining Sciences 46, 1358-1369 (2009).
http://dx.doi.org/10.1016/j.ijrmms.2009.04.010
6.
6.C. Clauser and H. Villinger, “Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben,” Geophys. J. Int. 100, 393-414 (1990).
http://dx.doi.org/10.1111/j.1365-246X.1990.tb00693.x
7.
7.R. Von Herzen and A. E. Maxwell, “The Measuremenot f Thermal Conductivityo f Deep-Sea Sediments by a Needle-Probe Method,” Journal of Geophysical Research 64, 1557-1562 (1959).
http://dx.doi.org/10.1029/JZ064i010p01557
8.
8.A. Beck, “A steady-state method for the rapid measurement of the thermal conductivity of rocks,” J. $ci. Instr. 34, 186-189 (1957).
http://dx.doi.org/10.1088/0950-7671/34/5/304
9.
9.Y. A. Popov, D. F. C. Pribnow, J. H. Sass, C. F. Williams, and H. Burkhardt, “Characterization of rock thermal conductivity by high-resolution optical scanning. 28 (2),” Geothermics 28(2), 253276 (1999).
http://dx.doi.org/10.1016/S0375-6505(99)00007-3
10.
10.W. Woodside and J. H. Messmer, “Thermal conductivity of porous media,” J. Appl. Phys. 32, 16881706 (1961).
http://dx.doi.org/10.1063/1.1728419
11.
11.J. Anand, W. H. Somerton, and E. Gomaa, “Predicting thermal conductivities of formations from other known properties,” Society of Petroleum Engineers Journal 13, 267-273 (1973).
http://dx.doi.org/10.2118/4171-PA
12.
12.R. Goss, J. Combs, and A. Timur, “Prediction of thermal conductivity in rocks from other physical parameters and from standard geophysical well logs,” in Proceedings of the SPWLA 16th Annual Logging Symposium (1975).
13.
13.W. R. Lindberg, R. R. Thomas, and R. J. Christensen, “Measurements of specific heat, thermal conductivity and thermal diffusivity of Utah tar sands,” Fuel 64, 80-85 (1985).
http://dx.doi.org/10.1016/0016-2361(85)90283-2
14.
14.G. Vasseur, F. Brigaud, and L. Demongodin, “Thermal conductivity estimation in sedimentary basins,” Tectonophysics 224, 167174 (1995).
http://dx.doi.org/10.1016/0040-1951(94)00225-X
15.
15.K. Midttømme, E. Roaldset, and P. Aagaard, “Thermal Conductivities of Argillaceous Sediments,” in Modern Geophysics in Engineering Geology Special Publications (Geological Society Engineering Geology, London, 1997), Vol. 12, pp. 355-363.
16.
16.K. Midttømme and E. Roaldset, “The effect of grain size on thermal conductivity of quartz sands and silts,” Petroleum Geoscience 4, 165172 (1998).
http://dx.doi.org/10.1144/petgeo.4.2.165
17.
17.S. L. Bryant, P. R. King, and D. W. Mellor, “1993a, Network Model Evaluation of Permeability and Spatial Correlation in a Real Random Sphere Packing,” Transport in Porous Media 11, 53-70 (1993).
http://dx.doi.org/10.1007/BF00614635
18.
18.S. Mohanty, “Effect of multiphase fluid saturation on the thermal conductivity of geologic media,” J. Appl. Phys. 30, L80L84 (1997).
19.
19.G. J. Cheng, A. B. Yu, and P. Zulli, “Evaluation of effective thermal conductivity from the structure of a packed bed,” Chemical Engineering Science 54, 41994209 (1999).
http://dx.doi.org/10.1016/S0009-2509(99)00125-6
20.
20.J. K. Carson, S. J. Lovatt, D. J. Tanner, and A. C. Cleland, “An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations,” International Journal of Refrigeration 873–880, 26 (2003).
21.
21.M. R. Wang and N. Pan, “Predictions of effective physical properties of complex multiphase materials,” Materials Science and Engineering R. 1-30, 63 (2008).
22.
22.M. R. Arab, B. Pateyron, M. El Ganaoui, and N. Calve, “Lattice Boltzamnn simulation for thermal conductivity estimation in heterogeneous materials,” Defect and Diffusion Forums 283-286, 364-369 (2009).
http://dx.doi.org/10.4028/www.scientific.net/DDF.283-286.364
23.
23.J. Kou, F. Wu, H. Lu, Y. Xu, and F. Song, “The effective thermal conductivity of porous media based on statistical self-similarity,” Physics Letters A 374, 6265 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.10.015
24.
24.M. G. Alishaev, I. M. Abdulagatov, and Z. Z. Abdulagatova, “Effective thermal conductivity of fluid-saturated rocks: Experiment and modeling,” Engineering Geology 135–136, 2439 (2012).
http://dx.doi.org/10.1016/j.enggeo.2012.03.001
25.
25.D. P. Do and D. Hoxha, “Temperature and Pressure Dependence of the Effective Thermal Conductivity of Geomaterials: Numerical Investigation by the Immersed Interface Method,” Journal of Applied Mathematics 2013, Article ID 456931 (2013).
http://dx.doi.org/10.1155/2013/456931
26.
26.M. Wang, J. Wang, N. Pan, and S. Chen, “Mesoscopic Predictions of the Effective Thermal Conductivity of Microscale Random Porous Media,” Physical Review E 75, 036702 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.036702
27.
27.M. Wang and Z. Li, “Nonideal gas flow and heat transfer in micro- and nanochannels using the direct simulation Monte Carlo method,” Physical Review E 68, 046704 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.046704
28.
28.I. Fatt, “The network model of porous media (in three parts),” Pet. Trans. AIME 207, 144-181 (1956).
29.
29.S. Bryant and M. Blunt, “Prediction of relative permeability in simple porous media,” Physical Review A 46, 2004-2011 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.2004
30.
30.A. C. Payatakes, C. Tien, and R. M. Turian, “A new model for granular porous media: Part I. Model formulation,” AIChE J. 19, 58-67 (1973).
http://dx.doi.org/10.1002/aic.690190110
31.
31.F. A. Dullien, Porous Media - Fluid Transport and Pore Structure (Academic Press, New York, 1979).
32.
32.A. C. Payatakes and M. A. Neira, “Model of the constricted unit cell type for isotropic granular porous media,” AIChE J. 23, 922-930 (1977).
http://dx.doi.org/10.1002/aic.690230620
33.
33.A. C. Payatakes, K. M. Ng, and R. W. Flumerfelt, “Oil ganglion dynamics during immiscible displacement: model formulation,” AIChE J. 26, 430-443 (1980).
http://dx.doi.org/10.1002/aic.690260315
34.
34.C. David, Y. Gueguen, and G. Pampoukis, “Effective medium theory and network theory applied to the transport properties of rock,” J. Geophys. Res. 95(B5), 6993-7005 (1990).
http://dx.doi.org/10.1029/JB095iB05p06993
35.
35.J. M. Dvorkin, M. Armbruster, C. Baldwin, Q. Fiang, N. Derzhi, C. Gomez, B. Nur, and A. Nur, “The future of rock physics: Computational methods vs. lab testing,” First Break 26, 6368 (2008).
36.
36.M. A. Knackstedt, S. Latham, M. Madadi, A. Sheppard, T. Varslot, and C. Arns, “Digital rock physics: 3D imaging of core materialand correlations to acoustic and flow properties,” The Leading Edge 28(no. 1), 2833 (2009).
http://dx.doi.org/10.1190/1.3064143
37.
37.E. H. Saenger, S. M. Schmalholz, M. A. Lambert, T. T. Nguyen, A. Torres, S. Metzger, R. M. Habiger, T. Müller, S. Rentsch, and E. Méndez-Hernández, “A passive seismic survey over a gas field: Analysis of low-frequency anomalies,” Geophysics 74(no. 2), O29-O40 (2009).
http://dx.doi.org/10.1190/1.3078402
38.
38.R. M. Holt, E. Fjaer, O. Torsaeter, and S. Bakke, “Petrophysical Laboratory Measurements for Basin and Resrervoir Evaluation,” Marine and Petroleum Geology 13, 383-391 (1996).
http://dx.doi.org/10.1016/0264-8172(95)00091-7
39.
39.P. E. Øren, S. Bakke, and O. J. Arntzen, “Extending predictive capabilities to network models,” SPE J 3, 324-336 (1998).
http://dx.doi.org/10.2118/52052-PA
40.
40.J. Finney, “Random packings and the structure of simple liquids. I. The geometry of random close packing,” Proc. Roy. Soc. 319A, 479494 (1970).
http://dx.doi.org/10.1098/rspa.1970.0189
41.
41.L. M. Schwartz and J. R. Banavar, “Transport properties of disordered continuum systems,” Phys. Rev. B 39, 11965-11970 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.11965
42.
42.P. H. Valvatne, M. Piri, X Lopez, and M. J. Blunt, “Predictive pore-scale modeling of single and multiphase flow,” Transport Porous Med. 58(1–2), 2341 (2005).
http://dx.doi.org/10.1007/s11242-004-5468-2
43.
43.M. A. Mousavi and S. L. Bryant, “Connectivity of Pore Space as a Control on Two-Phase Flow Properties of Tight-Gas Sandstones,” Transp Porous Med 94, 537554 (2012).
http://dx.doi.org/10.1007/s11242-012-0017-x
44.
44.V. Rzhevsky and G. Novik, The Physics of Rocks (Mir Publishers, Moscow, 1971), translated from the Russian by A. K. Chatterjee.
45.
45.F. X. Alvarez, D. Jou, and A. Sellitto, “Pore-size dependence of the thermal conductivity of porous silicon, A phonon hydrodynamic approach,” Appl. Phys. Lett. 97, 33103 (2010).
http://dx.doi.org/10.1063/1.3462936
46.
46.J. J. Zhao, “Thermophysical properties and heat transfer mechanisms of microsclae and nanoscale structures in aerogel-based composite insulators,” PhD Thesis, Tsinghua University, Beijing, China, 2012.
47.
47.M. R. Wang, N. Pan N., J. Wang, and S. Chen, “Mesoscopic simulation pf phase distribution effects on the effective thermal conductivity of micro-granular porous media,” J. Colliod Interface Sci 311, 562-570 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.03.038
48.
48.E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 2nd ed. (Springer-Verlag, Berlin, 1999).
49.
49.M. A .A. Mendes, S. Ray, and D. Trimis, “A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures,” Int. J. Heat Mass Transfer 66, 412422 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.032
50.
50.C. Demuth, M. A. A. Mendes, S. Ray, and D. Trimis, “Performance of thermal lattice Boltzmann and finite volume methods for the solution of heat conduction equation in 2D and 3D composite media with inclined and curved interfaces,” International Journal of Heat and Mass Transfer 77, 979994 (2014).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.05.051
51.
51.R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems (Academic Press, New York, 2004).
52.
52.H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM Journal on scientific and Statistical Computing 13, 631-644 (1992).
http://dx.doi.org/10.1137/0913035
53.
53.J. P. Holman, Heat Transfer (McGraw-Hill Book Company, Toronto, ON, 1986).
54.
54.M.M. Fyrillas and C. Pozrikidis, “Conductive heat transport across rough surfaces and interfaces between two conforming media,” International Journal of Heat and Mass Transfer 44, 1789-1801 (2001).
http://dx.doi.org/10.1016/S0017-9310(00)00225-8
55.
55.M. Wang and N. Pan, “RPredictions of effective phy sical prop erties of complex multiphas e mat erials,” Materials Science and Engineering 63, 1-30 (2008).
http://dx.doi.org/10.1016/j.mser.2008.07.001
56.
56.A. Aurangzeb and Maqsood, “Modeling of effective thermal conductivity of consolidated porous media with different saturations: A test case of Gabbro rocks,” International Journal of Thermodynamic 28, 1371-1386 (2007).
http://dx.doi.org/10.1007/s10765-007-0203-1
57.
57.I. Savija, J. R. Culham, and M. M. Yovanovich, “Review of Thermal Conductance Models for Joints Incorporating Enhancement Materials,” Journal of Thermophysics and Heat Transfer 17(1), 43-52 (2003).
http://dx.doi.org/10.2514/2.6732
58.
58.M. M. Fyrillas and C. Pozrikidis, “Conductive heat transport across rough surfaces and interfaces between two conforming media,” International Journal of Heat and Mass Transfer 44, 1789-1801 (2001).
http://dx.doi.org/10.1016/S0017-9310(00)00225-8
59.
59.M. A. Lambert and L. S. Fletcher, “Thermal Contact Conductance of Non-Flat, Rough, Metallic Coated Metals,” ASME Journal of Heat Transfer 124, 405-412 (2002).
http://dx.doi.org/10.1115/1.1464565
60.
60.Y. T. Feng, K. Han, and D. R. J. Owen, “Discrete thermal element modelling of heat conduction in particle systems: Basic formulations,” journal of computational physics 227, 50725089 (2008).
http://dx.doi.org/10.1016/j.jcp.2008.01.031
61.
61.Y. T. Feng, K. Han, and D. R. J. Owen, “Discrete thermal element modelling of heat conduction in particle systems: Pipe-network model and transient analysis,” Powder Technology 193, 248256 (2009).
http://dx.doi.org/10.1016/j.powtec.2009.03.001
62.
62.N. B. Vargaftik, Tables of the Thermophysical Properties of Liquids and Gases, 2nd ed. (Wiley, New York, 1973).
63.
63.A. Majumdar and C. L. Tien, “Fractal characterization and simulation of rough surfaces,” Wear 136, 313327 (1990).
http://dx.doi.org/10.1016/0043-1648(90)90154-3
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930258
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930258
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930258
2015-09-02
2016-09-29

Abstract

Pore scale modeling method has been widely used in the petrophysical studies to estimate macroscopic properties (e.g. porosity, permeability, and electrical resistivity) of porous media with respect to their micro structures. Although there is a sumptuous literature about the application of the method to study flow in porous media, there are fewer studies regarding its application to thermal conduction characterization, and the estimation of effective thermal conductivity, which is a salient parameter in many engineering surveys (e.g. geothermal resources and heavy oil recovery). By considering thermal contact resistance, we demonstrate the robustness of the method for predicting the effective thermal conductivity. According to our results obtained from Utah oil sand samples simulations, the simulation of thermal contact resistance is pivotal to grant reliable estimates of effective thermal conductivity. Our estimated effective thermal conductivities exhibit a better compatibility with the experimental data in companion with some famous experimental and analytical equations for the calculation of the effective thermal conductivity. In addition, we reconstruct a porous medium for an Alberta oil sand sample. By increasing roughness, we observe the effect of thermal contact resistance in the decrease of the effective thermal conductivity. However, the roughness effect becomes more noticeable when there is a higher thermal conductivity of solid to fluid ratio. Moreover, by considering the thermal resistance in porous media with different grains sizes, we find that the effective thermal conductivity augments with increased grain size. Our observation is in a reasonable accordance with experimental results. This demonstrates the usefulness of our modeling approach for further computational studies of heat transfer in porous media.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930258.html;jsessionid=aMQK0IoQx_HxKWct6w3PXvzK.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930258&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930258&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930258'
Right1,Right2,Right3,