Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
2.Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, and Z.-X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).
3.X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008).
4.F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, PNAS 105, 14262 (2008).
5.K.W. Yeh, H.C. Hsu, T.W. Huang, P.M. wu, Y.L. Yang, T.K. Chen, J.Y. Luo, and M.K. Wu, J. Phys. Soc. Jpn. 77, 19 (2008).
6.M.H. Fang, H.M. Pham, Q. Qian, T.J. Liu, E.K. Vehstedt, Y. Liu, L. Spinu, and Z.Q. Mao, Phys. Rev. B. 78, 224503 (2008).
7.T.P. Ying, X.L. Chen, G. Wang, S.F. Jin, T.T. Zhou, X.F. Lai, H. Zang, and W.Y. Wang, Sci. Rep. 2, 426 (2012).
8.X.F. Lu, N.Z. Wang, G.H. Zhang, X.G. Luo, Z.M. Ma, B. Lei, F.Q. Huang, and X.H. Xhen, Phys. Rev. B. 89, 020507R (2013).
9.C.-H. Li, B. Shen, F. Han, X. Zhu, and H.-H. Wen, Phys. Rev. B. 83, 174503 (2011).
10.J.G. Bednorz and K.A. Muller, Z. Phys. B. 64, 189 (1986).
11.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
12.J. Wen, G. Xu, G. Gu, J.M. Tranquada, and R.J. Birgeneau, Rep. Prog. Phys. 74, 124503 (2011).
13.D. P. Chen and C.T. Lin, Sup. Sci. & Tech. 27, 103002 (2014).
14.B.C. Sales, A.S. Sefat, M.A. McGuire, R.Y. Jin, D. Mandrus, and Y. Mozharivskyj, Phys. Rev. B. 79, 094521 (2009).
15.B.H. Mok, S.M. Rao, M.C. Ling, K.J. Wang, C.T. Ke, P.M. Wu, C.L. Chen, F.C. Hsu, T.W. Huang, J.Y. Luo, D.C. Yan, K.W. Ye, T.B. Wu, A.M. Chang, and M.K. Wu, Cryst. Growth Des. 9, 3260 (2009).
16.U. Patel, J. Hua, S.H. Yu, S. Avci, Z.L. Xiao, H. Claus, J. Schlueter, V.V. Vlasko-Vlasov, U. Welp, and W.K. Kwok, Appl. Phys. Lett. 94, 082508 (2009).
17.T.J. Liu, J. Hu, B. Qian, D. Fobes, Z. Q. Mao, W. Bao, M. Reehuis, S. A. J. Kimber, K. Prokes, S. Matas, D. N. Argyriou, A. Hiess, A. Rotaru, H. Pham, L. Spinu, Y. Qiu, V. Thampy, A.T. Savici, J. A. Rodriguez, and C. Broholm, Nat. Mater. 9, 718 (2010).
18.S.I. Vedeneev, B.A. Piot, D.K. Maude, and A.V. Sadakov, Phys. Rev. B 87, 134512 (2013).
19.G.F. Chen, Z.G. Chen, J. Dong, W.Z. Hu, G. Li, X.D. Zhang, P. Zheng, J.L. Luo, and N.L. Wang, Phys. Rev. B 79, 140509R (2009).
20.P.L. Paulose, C.S. Yadava, and K.M. Subedar, Euro. Phys. Lett. 90, 27011 (2010).
21.N. Katayama, S. Ji, D. Louca, S. Lee, M. Fujita, T.J. Sato, J. Wen, Z. Xu, G. Gu, G. Xu, Z. Lin, M. Enoki, S. Chang, K. Yamada, and J.M. Tranquada, J. Phys. Soc. Japan 79, 113702 (2010).
22.Y. Liu and C.T. Lin, J. Supercond. Novel Magn. 24, 187 (2011).
23.Y. Sun, T. Taen, Y. Tsuchiya, Z.X. Shi, and T. Tamegai, Sup. Sci. & Tech. 26, 015015 (2013).
24.T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 014522 (2009).
25.M. Ma, D. Yuan, Y. Wu, Z. Huaxue, X. Dong, and F. Zhou, Sup. Sci. & Tech. 27, 122001 (2014).
26.E. Pomjakushina, Sup. Sci. & Tech. 27, 120501 (2014).
27.V.P.S. Awana, A. Pal, A. Vajpayee, M. Mudgel, H. Kishan, M. Husain, R. Zeng, S. Yu, Y. F. Guo, Y.G. Shi, K. Yamaura, and E. T. Muromachi, J. Appl. Phys. 107, 09E128 (2010).
28.Y. Liu, R.K. Kremer, and C.T. Lin, Supercnd. Sci. & Tech. 24, 035012 (2011).
29.Y. Sun, T. Taen, T. Yamada, S. Pyon, T. Nishikazi, Z. Shi, and T. Tamegai, Phys. Rev. B. 89, 144512 (2014).
30.V.P.S. Awana, R.S. Meena, A. Pal, A. Vajpayee, K.V.R. Rao, and H. Kishan, Euro. Phys. J. B 79, 139 (2011).
31.Anuj Kumar, Anand Pal, R.P. Tandon, and V.P.S. Awana, Solid State Commun. 151, 1767 (2011).
32.Z.-S. Wang, H.-Q. Luo, C. Ren, and H.-H. Wen, Phys. Rev. B 78, 140501(R) (2008).
33.H.-S. Lee, M. Bartkowiak, J.-H. Park, J.-Y. Lee, J.-Y. Kim, N.-H. Sung, B. K. Cho, C.-U. Jung, J. S. Kim, and H.-J. Lee, Phys. Rev. B 80, 144512 (2009).
34.Z. Pribulova, T. Klein, J. Kacmarcik, C. Marcenat, M. Konczykowski, S. L. Budko, M. Tillman, and P. C. Canfield, Phys. Rev. B 79, 020508(R) (2009).
35.D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).
36.T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).
37.G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
38.J. Jaroszynski, F. Hunte, L. Balicas, Y.-J. Jo, I. Raicevic, A. Gurevich, D. C. Larbalestier, F. F. Balakirev, L. Fang, P. Cheng, Y. Jia, and H. H. Wen, Phys. Rev. B 78, 174523 (2008).
39.M. Shahbazi, X. L. Wang, C. Shekhar, O. N. Srivastava, and S. X. Dou, Supercond. Sci. Technol. 23, 105008 (2010).
40.Y. Z. Zhang, Z. A. Ren, and Z. X. Zhao, Supercond. Sci. Technol. 22, 065012 (2009).

Data & Media loading...


Article metrics loading...



We report successful growth of flux free large single crystals of superconducting FeSeTe with typical dimensions of up to few cm. The AC and DC magnetic measurements revealed the superconducting transition temperature (T) value of around 11.5K and the isothermal MH showed typical type-II superconducting behavior. The lower critical field (H) being estimated by measuring the low field isothermal magnetization in superconducting regime is found to be above 200Oe at 0K. The temperature dependent electrical resistivity ρ(T ) showed the T (onset) to be 14K and the T(ρ = 0) at 11.5K. The electrical resistivity under various magnetic fields i.e., ρ(T)H for H//ab and H//c demonstrated the difference in the width of T with applied field of 14Tesla to be nearly 2K, confirming the anisotropic nature of superconductivity. The upper critical and irreversibility fields at absolute zero temperature i.e., H(0) and H(0) being determined by the conventional one-band Werthamer–Helfand–Hohenberg (WHH) equation for the criteria of normal state resistivity) falling to 90% (onset), and 10% (offset) is 76.9Tesla, and 37.45Tesla respectively, for H//c and 135.4Tesla, and 71.41Tesla respectively, for H//ab. The coherence length at the zero temperature is estimated to be above 20Å ´ by using the Ginsburg-Landau theory. The activation energy for the FeSeTe in both directions H//c and H//ab is determined by using Thermally Activation Flux Flow (TAFF) model.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd