Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930584
1.
1.Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
http://dx.doi.org/10.1021/ja800073m
2.
2.Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, and Z.-X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).
http://dx.doi.org/10.1088/0256-307X/25/7/015
3.
3.X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008).
http://dx.doi.org/10.1038/nature07045
4.
4.F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, PNAS 105, 14262 (2008).
http://dx.doi.org/10.1073/pnas.0807325105
5.
5.K.W. Yeh, H.C. Hsu, T.W. Huang, P.M. wu, Y.L. Yang, T.K. Chen, J.Y. Luo, and M.K. Wu, J. Phys. Soc. Jpn. 77, 19 (2008).
http://dx.doi.org/10.1143/JPSJS.77SC.19
6.
6.M.H. Fang, H.M. Pham, Q. Qian, T.J. Liu, E.K. Vehstedt, Y. Liu, L. Spinu, and Z.Q. Mao, Phys. Rev. B. 78, 224503 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.224503
7.
7.T.P. Ying, X.L. Chen, G. Wang, S.F. Jin, T.T. Zhou, X.F. Lai, H. Zang, and W.Y. Wang, Sci. Rep. 2, 426 (2012).
http://dx.doi.org/10.1038/srep00426
8.
8.X.F. Lu, N.Z. Wang, G.H. Zhang, X.G. Luo, Z.M. Ma, B. Lei, F.Q. Huang, and X.H. Xhen, Phys. Rev. B. 89, 020507R (2013).
http://dx.doi.org/10.1103/PhysRevB.89.020507
9.
9.C.-H. Li, B. Shen, F. Han, X. Zhu, and H.-H. Wen, Phys. Rev. B. 83, 174503 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174503
10.
10.J.G. Bednorz and K.A. Muller, Z. Phys. B. 64, 189 (1986).
http://dx.doi.org/10.1007/BF01303701
11.
11.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
http://dx.doi.org/10.1038/35065039
12.
12.J. Wen, G. Xu, G. Gu, J.M. Tranquada, and R.J. Birgeneau, Rep. Prog. Phys. 74, 124503 (2011).
http://dx.doi.org/10.1088/0034-4885/74/12/124503
13.
13.D. P. Chen and C.T. Lin, Sup. Sci. & Tech. 27, 103002 (2014).
http://dx.doi.org/10.1088/0953-2048/27/10/103002
14.
14.B.C. Sales, A.S. Sefat, M.A. McGuire, R.Y. Jin, D. Mandrus, and Y. Mozharivskyj, Phys. Rev. B. 79, 094521 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.094521
15.
15.B.H. Mok, S.M. Rao, M.C. Ling, K.J. Wang, C.T. Ke, P.M. Wu, C.L. Chen, F.C. Hsu, T.W. Huang, J.Y. Luo, D.C. Yan, K.W. Ye, T.B. Wu, A.M. Chang, and M.K. Wu, Cryst. Growth Des. 9, 3260 (2009).
http://dx.doi.org/10.1021/cg801423g
16.
16.U. Patel, J. Hua, S.H. Yu, S. Avci, Z.L. Xiao, H. Claus, J. Schlueter, V.V. Vlasko-Vlasov, U. Welp, and W.K. Kwok, Appl. Phys. Lett. 94, 082508 (2009).
http://dx.doi.org/10.1063/1.3093838
17.
17.T.J. Liu, J. Hu, B. Qian, D. Fobes, Z. Q. Mao, W. Bao, M. Reehuis, S. A. J. Kimber, K. Prokes, S. Matas, D. N. Argyriou, A. Hiess, A. Rotaru, H. Pham, L. Spinu, Y. Qiu, V. Thampy, A.T. Savici, J. A. Rodriguez, and C. Broholm, Nat. Mater. 9, 718 (2010).
http://dx.doi.org/10.1038/nmat2800
18.
18.S.I. Vedeneev, B.A. Piot, D.K. Maude, and A.V. Sadakov, Phys. Rev. B 87, 134512 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.134512
19.
19.G.F. Chen, Z.G. Chen, J. Dong, W.Z. Hu, G. Li, X.D. Zhang, P. Zheng, J.L. Luo, and N.L. Wang, Phys. Rev. B 79, 140509R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.140509
20.
20.P.L. Paulose, C.S. Yadava, and K.M. Subedar, Euro. Phys. Lett. 90, 27011 (2010).
http://dx.doi.org/10.1209/0295-5075/90/27011
21.
21.N. Katayama, S. Ji, D. Louca, S. Lee, M. Fujita, T.J. Sato, J. Wen, Z. Xu, G. Gu, G. Xu, Z. Lin, M. Enoki, S. Chang, K. Yamada, and J.M. Tranquada, J. Phys. Soc. Japan 79, 113702 (2010).
http://dx.doi.org/10.1143/JPSJ.79.113702
22.
22.Y. Liu and C.T. Lin, J. Supercond. Novel Magn. 24, 187 (2011).
23.
23.Y. Sun, T. Taen, Y. Tsuchiya, Z.X. Shi, and T. Tamegai, Sup. Sci. & Tech. 26, 015015 (2013).
http://dx.doi.org/10.1088/0953-2048/26/1/015015
24.
24.T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 014522 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.014522
25.
25.M. Ma, D. Yuan, Y. Wu, Z. Huaxue, X. Dong, and F. Zhou, Sup. Sci. & Tech. 27, 122001 (2014).
http://dx.doi.org/10.1088/0953-2048/27/12/122001
26.
26.E. Pomjakushina, Sup. Sci. & Tech. 27, 120501 (2014).
http://dx.doi.org/10.1088/0953-2048/27/12/120501
27.
27.V.P.S. Awana, A. Pal, A. Vajpayee, M. Mudgel, H. Kishan, M. Husain, R. Zeng, S. Yu, Y. F. Guo, Y.G. Shi, K. Yamaura, and E. T. Muromachi, J. Appl. Phys. 107, 09E128 (2010).
28.
28.Y. Liu, R.K. Kremer, and C.T. Lin, Supercnd. Sci. & Tech. 24, 035012 (2011).
http://dx.doi.org/10.1088/0953-2048/24/3/035012
29.
29.Y. Sun, T. Taen, T. Yamada, S. Pyon, T. Nishikazi, Z. Shi, and T. Tamegai, Phys. Rev. B. 89, 144512 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.144512
30.
30.V.P.S. Awana, R.S. Meena, A. Pal, A. Vajpayee, K.V.R. Rao, and H. Kishan, Euro. Phys. J. B 79, 139 (2011).
http://dx.doi.org/10.1140/epjb/e2010-10674-x
31.
31.Anuj Kumar, Anand Pal, R.P. Tandon, and V.P.S. Awana, Solid State Commun. 151, 1767 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.08.031
32.
32.Z.-S. Wang, H.-Q. Luo, C. Ren, and H.-H. Wen, Phys. Rev. B 78, 140501(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.78.140501
33.
33.H.-S. Lee, M. Bartkowiak, J.-H. Park, J.-Y. Lee, J.-Y. Kim, N.-H. Sung, B. K. Cho, C.-U. Jung, J. S. Kim, and H.-J. Lee, Phys. Rev. B 80, 144512 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.144512
34.
34.Z. Pribulova, T. Klein, J. Kacmarcik, C. Marcenat, M. Konczykowski, S. L. Budko, M. Tillman, and P. C. Canfield, Phys. Rev. B 79, 020508(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.020508
35.
35.D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.130
36.
36.T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1662
37.
37.G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
http://dx.doi.org/10.1103/RevModPhys.66.1125
38.
38.J. Jaroszynski, F. Hunte, L. Balicas, Y.-J. Jo, I. Raicevic, A. Gurevich, D. C. Larbalestier, F. F. Balakirev, L. Fang, P. Cheng, Y. Jia, and H. H. Wen, Phys. Rev. B 78, 174523 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.174523
39.
39.M. Shahbazi, X. L. Wang, C. Shekhar, O. N. Srivastava, and S. X. Dou, Supercond. Sci. Technol. 23, 105008 (2010).
http://dx.doi.org/10.1088/0953-2048/23/10/105008
40.
40.Y. Z. Zhang, Z. A. Ren, and Z. X. Zhao, Supercond. Sci. Technol. 22, 065012 (2009).
http://dx.doi.org/10.1088/0953-2048/22/6/065012
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930584
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930584
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930584
2015-09-04
2016-09-28

Abstract

We report successful growth of flux free large single crystals of superconducting FeSeTe with typical dimensions of up to few cm. The AC and DC magnetic measurements revealed the superconducting transition temperature (T) value of around 11.5K and the isothermal MH showed typical type-II superconducting behavior. The lower critical field (H) being estimated by measuring the low field isothermal magnetization in superconducting regime is found to be above 200Oe at 0K. The temperature dependent electrical resistivity ρ(T ) showed the T (onset) to be 14K and the T(ρ = 0) at 11.5K. The electrical resistivity under various magnetic fields i.e., ρ(T)H for H//ab and H//c demonstrated the difference in the width of T with applied field of 14Tesla to be nearly 2K, confirming the anisotropic nature of superconductivity. The upper critical and irreversibility fields at absolute zero temperature i.e., H(0) and H(0) being determined by the conventional one-band Werthamer–Helfand–Hohenberg (WHH) equation for the criteria of normal state resistivity) falling to 90% (onset), and 10% (offset) is 76.9Tesla, and 37.45Tesla respectively, for H//c and 135.4Tesla, and 71.41Tesla respectively, for H//ab. The coherence length at the zero temperature is estimated to be above 20Å ´ by using the Ginsburg-Landau theory. The activation energy for the FeSeTe in both directions H//c and H//ab is determined by using Thermally Activation Flux Flow (TAFF) model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930584.html;jsessionid=MKvqLn4yb6_aK5hPW0B5p0ob.x-aip-live-03?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930584&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930584&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930584'
Right1,Right2,Right3,