Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930586
1.
1.D. L. Klein, R. Rotht, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, Nature 389, 699 (1997).
http://dx.doi.org/10.1038/39535
2.
2.I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, Nature Materials 4, 435 (2005).
http://dx.doi.org/10.1038/nmat1390
3.
3.H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. Il. Seok, M. Gratzel, and Md. K. Nazeeruddin, J. Phys. Chem. C 112, 11600 (2008).
http://dx.doi.org/10.1021/jp802572b
4.
4.M. S. Mehata, Appl. Phys. Lett. 100, 151908 (2012).
http://dx.doi.org/10.1063/1.3701719
5.
5.M. S. Mehata, Sci. Rep. 5, 12056 (2015).
http://dx.doi.org/10.1038/srep12056
6.
6.M. J. Bowers, J. R. McBride, and S. J. Rosenthal, J. Am. Chem. Soc. 127, 15378 (2005).
http://dx.doi.org/10.1021/ja055470d
7.
7.G. Mingyuan, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach, and H. Weller, J. Appl. Phys. 87, 2297 (2000).
http://dx.doi.org/10.1063/1.372177
8.
8.J. H. Bang and P. V. Kamat, ACS Nano 3, 1467 (2009).
http://dx.doi.org/10.1021/nn900324q
9.
9.S. J. Rosenthal, I. Tomlinson, E. M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Wang, L. J. DeFelice, and R.D. Blakely, J. Am. Chem. Soc. 124, 4586 (2002).
http://dx.doi.org/10.1021/ja003486s
10.
10.M. A. El-Sayed, Acc. Chem. Res. 37, 326 (2004).
http://dx.doi.org/10.1021/ar020204f
11.
11.A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).
http://dx.doi.org/10.1021/ja0782706
12.
12.J. R. Heine, J. Rodriguez-Viejo, M. G. Bawendi, and K. F Jensen, J. Cryst. Growth 195, 564 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00646-0
13.
13.D. Crouch, S. Norager, P.O. Brien, J. H. Park, and N. Pickett, Phil. Trans. R. Soc. A 361, 297 (2003).
http://dx.doi.org/10.1098/rsta.2002.1129
14.
14.J. H. Yoon, W. S. Chae, S. J. Im, and Y. R. Kim, Mater. Lett. 59, 1430 (2005).
http://dx.doi.org/10.1016/j.matlet.2004.11.056
15.
15.E. M. Boatman, G. C. Lisensky, and K. J. Nordell, J. Chem. Educ. 82, 1697 (2005).
http://dx.doi.org/10.1021/ed082p1697
16.
16.Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 183 (2001).
http://dx.doi.org/10.1021/ja003633m
17.
17.C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
http://dx.doi.org/10.1021/ja00072a025
18.
18.L. Manna, E. C. Scher, and A. P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000).
http://dx.doi.org/10.1021/ja003055+
19.
19.X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Nature 404, 59 (2000).
http://dx.doi.org/10.1038/35003535
20.
20.Q. Dai, D. Li, H. Chen, S. Kan, H. Li, S. Gao, Y. Hou, B. Liu, and G. Zou, J. Phys. Chem. B 110, 16508 (2006).
http://dx.doi.org/10.1021/jp063126c
21.
21.L. H. Qu and X. G. Peng, J. Am. Chem. Soc. 124, 2049 (2002).
http://dx.doi.org/10.1021/ja017002j
23.
23.D. Battaglia and X. G. Peng, Nano Lett. 2, 1027 (2002).
http://dx.doi.org/10.1021/nl025687v
24.
24.W. W. Yu and X. G. Peng, Angew Chem. Int. Ed. 41, 2368 (2000).
http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
25.
25.C. R. Bullen and P. Mulvaney, Nano Lett. 4, 2303 (2004).
http://dx.doi.org/10.1021/nl0496724
26.
26.J. Jasieniak, C. Bullen, J. V. Embden, and P. Mulvaney, J. Phys. Chem. B 109, 20665 (2005).
http://dx.doi.org/10.1021/jp054289o
27.
27.M. Sun and X. Yang, J. Phys. Chem. C 113, 8701 (2009).
http://dx.doi.org/10.1021/jp811308h
28.
28.W. C. W. Chan and S. M. Nie, Science 281, 2016 (1998).
http://dx.doi.org/10.1126/science.281.5385.2016
29.
29.J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, and W. Lei, Appl. Phys. Lett. 94, 153115 (2009).
http://dx.doi.org/10.1063/1.3117221
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4930586 for Fig. S1.[Supplementary Material]
31.
31.W. E. Mahmoud and H. M. El-Mallah, J. Phys. D: Appl. Phys. 42, 35502 (2009).
http://dx.doi.org/10.1088/0022-3727/42/3/035502
32.
32.S. V. Gaponenko, Optical properties of semiconductor nanocrystals (Cambridge University Press, Cambridge, 1998).
33.
33.E. Cohen and M. D. Sturge, Phys. Rev. B 25, 3828 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.3828
34.
34.C. T. Giner, A. Debernardi, M. Cardona, E. M. Proupin, and A. I. Ekimov, Phys. Rev. B 57, 4664 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.4664
35.
35.L. Qu, Z. A. Peng, and X. G. Peng, Nano Lett. 1, 333 (2001).
http://dx.doi.org/10.1021/nl0155532
36.
36.D. I. Lubyshev, P. G. Borrero, E. Marega, E. Petitprez, N. Lascala, and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).
http://dx.doi.org/10.1063/1.116461
37.
37.A. Bagga, P. K. Chattopadhyay, and S. Ghosh, Phys. Rev. B 74, 035341 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.035341
38.
38.A. M. Coto-Garcia, T. M. Fernandez-Arguells, J. M. Costa-Fernandez, A. Sanz-Medel, M. Valledor, J. C. Campo, and F.J. Ferrero, J. Nanopart. Res. 15, 1330 (2013).
http://dx.doi.org/10.1007/s11051-012-1330-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930586
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930586
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930586
2015-09-04
2016-12-08

Abstract

Cadmium selenide (CdSe) quantum dots (Q-dots) were prepared by using non-coordinating solvent octadecene instead of coordinating agent trioctylphosphine oxide (TOPO). Reaction processes were carried out at various temperatures of 240°, 260°, 280° and 300° C under nitrogen atmosphere. The prepared CdSe Q-dots which are highly stable show uniform size distribution and tunable optical absorption and photoluminescence (PL). The growth temperature significantly influenced the particle size; spectral behavior, energy band gap and PL intensity and the full width at half maxima (FWHM). Three different methods were employed to determine the particle size and the average particle size of the CdSe Q-dots is 3.2 - 4.3 nm, grown at different temperatures. In addition, stable and mono-dispersed water soluble CdSe Q-dots were prepared by the ligand exchange technique. Thus, the water soluble Q-dots, which are sensitive to the basic pH may be important for biological applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930586.html;jsessionid=rus7XupMsMOzJlCQHTL2I8oR.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930586&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930586&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930586'
Right1,Right2,Right3,