Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930595
1.
1.A. K. Tagantsev, Sov. Phys. JETP 61, 1246 (1985);
1.A. K. Tagantsev, Phys. Rev. B 34, 5883 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5883
2.
2.L. E. Cross, J. Mater. Sci. 41, 53 (2006).
http://dx.doi.org/10.1007/s10853-005-5916-6
3.
3.P. Zubko, G. Catalan, and A. K. Tagantsev, Annu. Rev. Mater. Res. 43, 387 (2013).
http://dx.doi.org/10.1146/annurev-matsci-071312-121634
4.
4.P. V. Yudin and A K Tagantsev, Nanotechnology 24, 432001 (2013).
http://dx.doi.org/10.1088/0957-4484/24/43/432001
5.
5.T. D. Nguyen, S. Mao, Y.W. Yeh, P. K. Purohit, and M.C. McAlpine, Adv. Mater. 25, 946 (2013).
http://dx.doi.org/10.1002/adma.201203852
6.
6.G. Catalan, A. Lubk, A. H. G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D. H. A. Blank, and B. Noheda, Nature Mater. 10, 963 (2011).
http://dx.doi.org/10.1038/nmat3141
7.
7.P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, and J. F. Scott, Phys. Rev. Lett. 99, 167601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.167601
8.
8.W. Ma and L. E. Cross, Appl. Phys. Lett. 78, 2970 (2001);
http://dx.doi.org/10.1063/1.1361276
8.W. Ma and L. E. Cross, Appl. Phys. Lett. 79, 4420 (2001);
http://dx.doi.org/10.1063/1.1426690
8.W. Ma and L. E. Cross, Appl. Phys. Lett. 81, 3440 (2002);
http://dx.doi.org/10.1063/1.1518559
8.W. Ma and L. E. Cross, Appl. Phys. Lett. 82, 3293 (2003);
http://dx.doi.org/10.1063/1.1570517
8.W. Ma and L. E. Cross, Appl. Phys. Lett. 86, 072905 (2005);
http://dx.doi.org/10.1063/1.1868078
8.W. Ma and L. E. Cross, Appl. Phys. Lett. 88, 232902 (2006).
http://dx.doi.org/10.1063/1.2211309
9.
9.M. S. Majdoub, P. Sharma, and T. Cagin, Phys. Rev. B 77, 125424 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125424
10.
10.W.H. Ma, Phys. Status Solidi B 247, 213 (2010).
http://dx.doi.org/10.1002/pssb.200945394
11.
11.Z. G. Zhang, Z. Yan, and L. Y. Jiang, J. Appl. Phys. 116, 014307 (2014).
http://dx.doi.org/10.1063/1.4886315
12.
12.Z. Yan and L. Y. Jiang, J. PHYS. D-APPL. PHYS. 46, 355502 (2013).
http://dx.doi.org/10.1088/0022-3727/46/35/355502
13.
13.A. R. Hadjesfandiari, J. SOLIDS. STRUCT. 50, 2781 (2013).
http://dx.doi.org/10.1016/j.ijsolstr.2013.04.020
14.
14.Z. Yan and L. Y. Jiang, J. Appl. Phys. 113, 194102 (2013).
http://dx.doi.org/10.1063/1.4804949
15.
15.A. N. Morozovska, E. A. Eliseev, O. V. Varenyk, and S. V. Kalinin, J. Appl. Phys. 113, 187222 (2013).
http://dx.doi.org/10.1063/1.4801988
16.
16.X. D. Wang, Nano Energy 1, 13 (2013).
http://dx.doi.org/10.1016/j.nanoen.2011.09.001
17.
17.Y. Zheng, B. Wang, and C. H. Woo, Appl. Phys. Lett. 89, 062904 (2006).
http://dx.doi.org/10.1063/1.2335369
18.
18.A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk, L. Q. Chen, and V. Gopalan, Phys. Rev. B 85, 094107 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.094107
19.
19.A. N. Morozovska, E. A. Eliseev, S. L. Bravina, A.Y. Borisevich, and S. V. Kalinin, J. Appl. Phys. 112, 064111 (2012).
http://dx.doi.org/10.1063/1.4752397
20.
20.John Y. Fu and L. Eric Cross, Appl. Phys. Lett. 91, 162903 (2007).
http://dx.doi.org/10.1063/1.2790476
21.
21.E. K. Akdogan and A. Safari, Jpn. J. Appl. Phys. 41, 7170 (2002).
http://dx.doi.org/10.1143/JJAP.41.7170
22.
22.S. Li, J. A. Eastman, and R. E. Newnham, Jpn. J. Appl. Phys. 35, L502 (1996);
http://dx.doi.org/10.1143/JJAP.35.L502
22.S. Li, J. A. Eastman, and J. M. Vetrone, Jpn. J. Apply. Phys. 36, 5169 (1997).
http://dx.doi.org/10.1143/JJAP.36.5169
23.
23.Z.-G. Ban and S. P. Alpay, J. Appl. Phys. 91, 9288 (2002).
http://dx.doi.org/10.1063/1.1473675
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930595
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930595
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930595
2015-09-04
2016-09-28

Abstract

A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of BaSrTiO above similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930595.html;jsessionid=3lZeINXfGDv1HuVbLc5JZX4y.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930595&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930595&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930595'
Right1,Right2,Right3,