Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930598
1.
1.S. Barauh and J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009).
http://dx.doi.org/10.1088/1468-6996/10/1/013001
2.
2.S Xu and Z.L. Wang, Nano Res. 4, 10131098 (2011).
http://dx.doi.org/10.1007/s12274-011-0160-7
3.
3.D.C. Look, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 80, 383 (2001).
http://dx.doi.org/10.1016/S0921-5107(00)00604-8
4.
4.A.B. Djuria, X.C. Chen, Y.H. Leunga, and A.N.C. Ngab, J. Mater. Chem. 22, 6526 (2012).
http://dx.doi.org/10.1039/c2jm15548f
5.
5.W. Liu, A. B. Greytak, J. Lee et al., Journal of the American Chemical Society 132-2, 472483 (2010).
http://dx.doi.org/10.1021/ja908137d
6.
6.T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 17911794 (1995).
http://dx.doi.org/10.1126/science.270.5243.1791
7.
7.F. D. Wang, A. G. Dong, J. W. Sun, R. Tang, H. Yu, and W. E. Buhro, Inorg. Chem. 45, 75117521 (2006).
http://dx.doi.org/10.1021/ic060498r
8.
8.A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Nat. Mater. 3, 677681 (2004).
http://dx.doi.org/10.1038/nmat1220
9.
9.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 8990 (1964).
http://dx.doi.org/10.1063/1.1753975
10.
10.A. M. Morales and C. M. Lieber, Science 279, 208211 (1998).
http://dx.doi.org/10.1126/science.279.5348.208
11.
11.F. Meng, S. A. Morin, A. Forticaux, and S. Jin, Acc. Chem. Res. 46, 1616-1626 (2013).
http://dx.doi.org/10.1021/ar400003q
12.
12.J. M. Velazquez, S. Baskaran, A. V. Gaikwad, T-T Ngo-Duc, X. He, M. M. Oye, M. Meyyappan, T. K. Rout, J. Y. Fu, and S. Banerjee, ACS applied materials & interfaces 5, 10650 (2013).
http://dx.doi.org/10.1021/am402679w
13.
13.J.B. Wang, G.J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, and E.H. Liu, Appl. Phys. lett. 88, 252502 (2006).
http://dx.doi.org/10.1063/1.2208564
14.
14.C. X. Xu, G. P. Zhu, X. Li, Y. Yang, S. T. Tan, X. W. Sun, C. Lincoln, and T. A. Smith, J. App. Phy. 103, 094303 (2008).
http://dx.doi.org/10.1063/1.2908189
15.
15.G.K. Williamson and W.H. Hall, Acta Metall. 1, 22-31 (1953).
http://dx.doi.org/10.1016/0001-6160(53)90006-6
16.
16.J.J. Dong, C.Y. Zhen, H.Y. Hao, J. Xing, Z.L. Zhang, Z.Y. Zheng, and X.W. Zhang, Nanoscale Research Letters 8, 378 (2013).
http://dx.doi.org/10.1186/1556-276X-8-378
17.
17.Y. Fang, Q. Pang, X. Wen, J. Wang, and S. Yang, Small 2, 612 (2006).
http://dx.doi.org/10.1002/smll.200500379
18.
18.F. Zhao, J.G. Zheng, X. Yang, X. Li, J. Wang, F. Zhao, K.S. Wong, C. Liang, and M. Wu, Nanoscale 2, 1674-1683 (2010).
http://dx.doi.org/10.1039/c0nr00076k
19.
19.W.J. Li, E.W. Shi, W.Z. Zhong, and Z.W. Yin, J. Cryst. Growth 203, 186 (1999).
http://dx.doi.org/10.1016/S0022-0248(99)00076-7
20.
20.Hong-Jie Yang, Sheng-Yan He, and Hsing-Yu Tuan, Nanoscale 6, 90349042 (2014).
http://dx.doi.org/10.1039/C4NR01888E
21.
21.Song Jin, Matthew J. Bierman, and Stephen A. Morin, J. Phys. Chem. Lett. 1, 14721480 (2010).
http://dx.doi.org/10.1021/jz100288z
22.
22.Matthew J. Bierman, Y. K. Albert Lau, Alexander V. Kvit, Andrew L. Schmitt, and Song Jin, Science 328, 476 (2008).
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4930598 for details of the growth mechanism.[Supplementary Material]
24.
24.H.B. Zeng, W.P. Cai, J.L. Hu, G.T. Duan, P.S. Liu, and Y. Li, Appl. Phys. Lett. 88, 171910 (2006).
http://dx.doi.org/10.1063/1.2196051
25.
25.Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, and S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001).
http://dx.doi.org/10.1063/1.1342050
26.
26.B.J. Pierce and R.L. Hengehold, J. Appl. Phys. 47, 644 (1976).
http://dx.doi.org/10.1063/1.322627
27.
27.S.A. Studenikinm, N. Golegu, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).
http://dx.doi.org/10.1063/1.368295
28.
28.L. Dai, X.L. Chen, W.J. Wang, T. Zhou, and B.Q. Hu, J. Phys.: Condens.Matter. 15, 2221 (2003).
http://dx.doi.org/10.1088/0953-8984/15/13/308
29.
29.M. Liu et al., J. Lumin. 54, 35 (1992).
http://dx.doi.org/10.1016/0022-2313(92)90047-D
30.
30.K. Vanheusden et al., Appl. Phys. Lett. 68, 403 (1996).
http://dx.doi.org/10.1063/1.116699
31.
31.P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205203
32.
32.D. Behera and B.S. Acharya, Journal of luminescence 128, 1577 (2008).
http://dx.doi.org/10.1016/j.jlumin.2008.03.006
33.
33.S. Singh and P. Chakrabarti, Super lattice Microst. 64, 283293 (2013).
http://dx.doi.org/10.1016/j.spmi.2013.09.031
34.
34.C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 1351-1363 (1969).
http://dx.doi.org/10.1103/PhysRev.181.1351
35.
35.N. Ashkenov et al., J. Appl. Phys. 93, 126-133 (2006).
http://dx.doi.org/10.1063/1.1526935
36.
36.M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, J. Appl. Phys. 87, 24452448 (2000).
http://dx.doi.org/10.1063/1.372199
37.
37.A. Pimentel, D. Nunes, P. Duarte, J. Rodrigues, F. M. Costa, T. Monteiro, R. Martins, and E. Fortunato, J. Phys. Chem. C 118, 1462914639 (2014).
http://dx.doi.org/10.1021/jp5027509
38.
38.S. J. Chen, Y.C. Liu, Y. M. Lu, J. Y. Zhang, D. Z. Shen, and X. W. Fan, J. Cryst. Growth 289, 5558 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.10.137
39.
39.H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625-629 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90337-9
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930598
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930598
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930598
2015-09-04
2016-12-10

Abstract

This research article provides a pathway of controlled growth of ZnO nano-rods, -flowers, -needles or -tubes without external chemical catalysis, via a simple wet chemical method by control of synthesis temperature. Morphological effects on structural and optical properties are studied by Ultraviolet-visible (UV-vis) spectroscopy shows slight enhancement in the band gap, with increasing synthesis temperature. Photoluminescence (PL) data indicates the existence of defect in the nanomaterials, which is more elaborately explained by schematic band diagram. A sharp and strong peak in Raman spectroscopy is observed at ∼438cm−1 is assigned to the E high optical mode of the ZnO, indicating the wurtzite hexagonal phase with high crystallinity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930598.html;jsessionid=jLpOyuF2NcFEP1QGhVT_EZDo.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930598&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930598&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930598'
Right1,Right2,Right3,