Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Y. Chu, T. Y. Chen, I. T. Tsai, and W. Water, Sen. Actu. A 113, 66 (2004).
2.I.-T. Seo, C.-H. Choi, M.-S. Jang, B.-Y. Kim, G. F. Han, S. Nahm, K.-H. Cho, and J.-H. Paik, Sensors and Actuators A 200, 47 (2013).
3.L. Egerton and D. M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).
4.R. E. Jaeger and L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962).
5.G. H. Haertling, J. Am. Ceram. Soc. 50, 329 (1967).
6.Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).
7.R.-A. Eichel, E. Erünal, P. Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker, and M. J. Hoffmann, Appl. Phy. Lett. 102, 242908 (2013).
8.W. W. Ge, Y Ren, J. L. Zhang, C. P. Devreugd, J. F. Li, and D. Veehland, J. Appl. Phys. 111, 103503 (2012).
9.X. J. Cheng, J. G. Wu, X. P. Wang, B. Y. Zhang, X. J. Lou, X. J. Wang, D. Q. Xiao, and J. G. Zhu, Acs Appl. Mater. Interfaces 5, 10409 (2013).
10.Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85(18), 4121 (2004).
11.S. Zhang, R. Xia, H. Hao, H. Liu, and T. R. Shrout, Appl. Phys. Lett. 92(15), 152904 (2008).
12.J. H. Moon, H. M. Jang, and B. D. You, J. Mater. Res. 8, 3184 (1993).
13.R. Rani, S. Sharma, R. Rai, and A. L. Kholkin, J. App. Phys. 110, 104102 (2011).
14.A. F. Tian and H. L. Du, Ferroeletrics 463, 72 (2014).
15.T. Liu, A. L. Ding, X.Y. He, X. S. Zheng, P. S. Qiu, and W. X. Cheng, phys. stat. sol. A 203(15), 3861 (2006).
16.E. Li, H. Kakemot, S. Wada, and T. Tsuruni, J. Ceram. Soc. Jpn. 115(4), 250 (2007).
17.S. Tashiro, K. Ishii, and T. WADA, Jpn. J. Appl. Phys. 45(9B), 7449 (2006).
18.H. L. Du, W. C. Zhou, F. Luo, D. M. Zhu, S. B. Qu, and Z. B. Pei, Appl. Phys. Lett. 91, 202907 (2007).
19.J. Wang, X. M. Chen, X. M. Zhao, X. X. Liang, X. Liu, and P. Liu, J. Electroceram 32, 332 (2014).
20.V. V. Atuchin, I. E. Kalabin, V. G. Kesler, and N. V. Pervukhina, J. Electr. Spectr. Related Phenom. 142, 129 (2005).
21.H. Yang, J. X. Zhang, G. J. Lin, T. Xian, and J. L. Jiang, Advanced Powder Technology 24, 242 (2013).
22.M. Wegmann, L. Watson, and A.N. Hendry, J. Am. Ceram. Soc. 87(3), 371 (2004).
23.J. Hu, L. N. Wang, L. N. Shi, and H. Huang, J. Power Sources 269, 144-51 (2014).
24.M. You, T. G. Kim, and Y. M. Sung, Crystal growth & des. 10(2), 983 (2010).
25.L. J. Zhang, S. Wang, and C. Lu, Anal. chem 87, 7313 (2015).
26.T. Nanba, S. Sakida, and Y. Miura, in Advances in Glass and Optical Materials II: Ceramic Transactions Series, edited by M. Affatigato. (USA, 2006), Chapter 16, doi: 10.1002/9781118144138.
27.W. L. Zhu, J. L. Zhu, Y. Meng, M. S. Wang, B. Zhu, X. H. Zhu, J. G. Zhu, D. Q. Xiao, and G. Pezzotti, J. Phys. D: Appl. Phys. 44, 505303 (2011).
28.Y. Kizaki, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 89, 142910 (2006).
29.C. H. Yang, G. D. Hu, H. T. Wu, F. Yang, Z. Y. Lu, and L. Wang, Appl. Phys. Lett. 100, 022909 (2012).
30.R.-A. Eichel, E. Erünal, P. Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker, and M. J. Hoffmann, Appl. Phys. Lett. 102, 242908 (2013).
31.L. Y. Wang, W. Ren, P. Shi, X. Q. Wu, and X. Yao, Appl. Phys. Lett. 97, 072902 (2010).
32.K. Hayashi, A. Ando, Y. Hamaji, and Y. Sakabe, Jpn, J. Appl. Phys. 37, 5237 (1998).
33.R. Böttcher, H. T. Langhammer, T. Müller, and H.-P. Abicht, J. Phys. :Condens. Matter 17, 4925 (2005).

Data & Media loading...


Article metrics loading...



The un-doped and doped lead-free piezoelectric potassium sodium niobate (K Na NbO, KNN) ceramics with different amounts of Mn were prepared. The decreased dielectric losses and the improved electrical properties were observed in the Mn-doped KNN ceramics. However, the variation of electrical properties with the Mn contents was not continuously. The 0.5 mol.% Mn-doped KNN ceramic shows the highest dielectric loss and the worst electrical properties. The KNN ceramics doped with less than and more than 0.5 mol.% Mn all show improved electrical properties. The change of lattice position of Mn ions in KNN ceramics was the main reason. When the Mn content is less than 0.5 mol.%, the Mn ions occupied the cation vacancies in A-site. When the Mn content is higher than 0.5 mol.%, the Mn ions entered B-site of KNN perovskite structure and formed the defect complexes ( ) and ( ). They both led to a lower defect concentration. However, When the Mn content is up to 1.5 mol.%, the electrical properties of KNN ceramic became degraded because of the accumulation of Mn oxides at grain boundaries.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd