Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930820
1.
1.S. Y. Chu, T. Y. Chen, I. T. Tsai, and W. Water, Sen. Actu. A 113, 66 (2004).
2.
2.I.-T. Seo, C.-H. Choi, M.-S. Jang, B.-Y. Kim, G. F. Han, S. Nahm, K.-H. Cho, and J.-H. Paik, Sensors and Actuators A 200, 47 (2013).
http://dx.doi.org/10.1016/j.sna.2012.10.040
3.
3.L. Egerton and D. M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).
http://dx.doi.org/10.1111/j.1151-2916.1959.tb12971.x
4.
4.R. E. Jaeger and L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962).
http://dx.doi.org/10.1111/j.1151-2916.1962.tb11127.x
5.
5.G. H. Haertling, J. Am. Ceram. Soc. 50, 329 (1967).
http://dx.doi.org/10.1111/j.1151-2916.1967.tb15121.x
6.
6.Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
7.
7.R.-A. Eichel, E. Erünal, P. Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker, and M. J. Hoffmann, Appl. Phy. Lett. 102, 242908 (2013).
http://dx.doi.org/10.1063/1.4811268
8.
8.W. W. Ge, Y Ren, J. L. Zhang, C. P. Devreugd, J. F. Li, and D. Veehland, J. Appl. Phys. 111, 103503 (2012).
http://dx.doi.org/10.1063/1.4716027
9.
9.X. J. Cheng, J. G. Wu, X. P. Wang, B. Y. Zhang, X. J. Lou, X. J. Wang, D. Q. Xiao, and J. G. Zhu, Acs Appl. Mater. Interfaces 5, 10409 (2013).
http://dx.doi.org/10.1021/am403448r
10.
10.Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85(18), 4121 (2004).
http://dx.doi.org/10.1063/1.1813636
11.
11.S. Zhang, R. Xia, H. Hao, H. Liu, and T. R. Shrout, Appl. Phys. Lett. 92(15), 152904 (2008).
http://dx.doi.org/10.1063/1.2908960
12.
12.J. H. Moon, H. M. Jang, and B. D. You, J. Mater. Res. 8, 3184 (1993).
http://dx.doi.org/10.1557/JMR.1993.3184
13.
13.R. Rani, S. Sharma, R. Rai, and A. L. Kholkin, J. App. Phys. 110, 104102 (2011).
http://dx.doi.org/10.1063/1.3660267
14.
14.A. F. Tian and H. L. Du, Ferroeletrics 463, 72 (2014).
http://dx.doi.org/10.1080/00150193.2014.891921
15.
15.T. Liu, A. L. Ding, X.Y. He, X. S. Zheng, P. S. Qiu, and W. X. Cheng, phys. stat. sol. A 203(15), 3861 (2006).
http://dx.doi.org/10.1002/pssa.200622321
16.
16.E. Li, H. Kakemot, S. Wada, and T. Tsuruni, J. Ceram. Soc. Jpn. 115(4), 250 (2007).
http://dx.doi.org/10.2109/jcersj.115.250
17.
17.S. Tashiro, K. Ishii, and T. WADA, Jpn. J. Appl. Phys. 45(9B), 7449 (2006).
http://dx.doi.org/10.1143/JJAP.45.7449
18.
18.H. L. Du, W. C. Zhou, F. Luo, D. M. Zhu, S. B. Qu, and Z. B. Pei, Appl. Phys. Lett. 91, 202907 (2007).
http://dx.doi.org/10.1063/1.2815750
19.
19.J. Wang, X. M. Chen, X. M. Zhao, X. X. Liang, X. Liu, and P. Liu, J. Electroceram 32, 332 (2014).
http://dx.doi.org/10.1007/s10832-014-9908-2
20.
20.V. V. Atuchin, I. E. Kalabin, V. G. Kesler, and N. V. Pervukhina, J. Electr. Spectr. Related Phenom. 142, 129 (2005).
http://dx.doi.org/10.1016/j.elspec.2004.10.003
21.
21.H. Yang, J. X. Zhang, G. J. Lin, T. Xian, and J. L. Jiang, Advanced Powder Technology 24, 242 (2013).
http://dx.doi.org/10.1016/j.apt.2012.06.009
22.
22.M. Wegmann, L. Watson, and A.N. Hendry, J. Am. Ceram. Soc. 87(3), 371 (2004).
http://dx.doi.org/10.1111/j.1551-2916.2004.00371.x
23.
23.J. Hu, L. N. Wang, L. N. Shi, and H. Huang, J. Power Sources 269, 144-51 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2014.07.004
24.
24.M. You, T. G. Kim, and Y. M. Sung, Crystal growth & des. 10(2), 983 (2010).
http://dx.doi.org/10.1021/cg9012944
25.
25.L. J. Zhang, S. Wang, and C. Lu, Anal. chem 87, 7313 (2015).
http://dx.doi.org/10.1021/acs.analchem.5b02267
26.
26.T. Nanba, S. Sakida, and Y. Miura, in Advances in Glass and Optical Materials II: Ceramic Transactions Series, edited by M. Affatigato. (USA, 2006), Chapter 16, doi: 10.1002/9781118144138.
27.
27.W. L. Zhu, J. L. Zhu, Y. Meng, M. S. Wang, B. Zhu, X. H. Zhu, J. G. Zhu, D. Q. Xiao, and G. Pezzotti, J. Phys. D: Appl. Phys. 44, 505303 (2011).
http://dx.doi.org/10.1088/0022-3727/44/50/505303
28.
28.Y. Kizaki, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 89, 142910 (2006).
http://dx.doi.org/10.1063/1.2357859
29.
29.C. H. Yang, G. D. Hu, H. T. Wu, F. Yang, Z. Y. Lu, and L. Wang, Appl. Phys. Lett. 100, 022909 (2012).
http://dx.doi.org/10.1063/1.3676663
30.
30.R.-A. Eichel, E. Erünal, P. Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker, and M. J. Hoffmann, Appl. Phys. Lett. 102, 242908 (2013).
http://dx.doi.org/10.1063/1.4811268
31.
31.L. Y. Wang, W. Ren, P. Shi, X. Q. Wu, and X. Yao, Appl. Phys. Lett. 97, 072902 (2010).
http://dx.doi.org/10.1063/1.3479530
32.
32.K. Hayashi, A. Ando, Y. Hamaji, and Y. Sakabe, Jpn, J. Appl. Phys. 37, 5237 (1998).
http://dx.doi.org/10.1143/JJAP.37.5237
33.
33.R. Böttcher, H. T. Langhammer, T. Müller, and H.-P. Abicht, J. Phys. :Condens. Matter 17, 4925 (2005).
http://dx.doi.org/10.1088/0953-8984/17/32/006
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930820
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930820
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930820
2015-09-08
2016-12-08

Abstract

The un-doped and doped lead-free piezoelectric potassium sodium niobate (K Na NbO, KNN) ceramics with different amounts of Mn were prepared. The decreased dielectric losses and the improved electrical properties were observed in the Mn-doped KNN ceramics. However, the variation of electrical properties with the Mn contents was not continuously. The 0.5 mol.% Mn-doped KNN ceramic shows the highest dielectric loss and the worst electrical properties. The KNN ceramics doped with less than and more than 0.5 mol.% Mn all show improved electrical properties. The change of lattice position of Mn ions in KNN ceramics was the main reason. When the Mn content is less than 0.5 mol.%, the Mn ions occupied the cation vacancies in A-site. When the Mn content is higher than 0.5 mol.%, the Mn ions entered B-site of KNN perovskite structure and formed the defect complexes ( ) and ( ). They both led to a lower defect concentration. However, When the Mn content is up to 1.5 mol.%, the electrical properties of KNN ceramic became degraded because of the accumulation of Mn oxides at grain boundaries.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930820.html;jsessionid=QBEqvywCwNRIr0kirVW5ZVNa.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930820&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930820&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930820'
Right1,Right2,Right3,